When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Band gap - Wikipedia

    en.wikipedia.org/wiki/Band_gap

    In solid-state physics and solid-state chemistry, a band gap, also called a bandgap or energy gap, is an energy range in a solid where no electronic states exist. In graphs of the electronic band structure of solids, the band gap refers to the energy difference (often expressed in electronvolts ) between the top of the valence band and the ...

  3. Direct and indirect band gaps - Wikipedia

    en.wikipedia.org/wiki/Direct_and_indirect_band_gaps

    In semiconductors, the band gap of a semiconductor can be of two basic types, a direct band gap or an indirect band gap. The minimal-energy state in the conduction band and the maximal-energy state in the valence band are each characterized by a certain crystal momentum (k-vector) in the Brillouin zone. If the k-vectors are different, the ...

  4. Electronic band structure - Wikipedia

    en.wikipedia.org/wiki/Electronic_band_structure

    Energy band gaps can be classified using the wavevectors of the states surrounding the band gap: Direct band gap: the lowest-energy state above the band gap has the same k as the highest-energy state beneath the band gap. Indirect band gap: the closest states above and beneath the band gap do not have the same k value.

  5. Electromagnetic spectrum - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_spectrum

    In frequency (and thus energy), UV rays sit between the violet end of the visible spectrum and the X-ray range. The UV wavelength spectrum ranges from 399 nm to 10 nm and is divided into 3 sections: UVA, UVB, and UVC. UV is the lowest energy range energetic enough to ionize atoms, separating electrons from them, and thus causing chemical reactions.

  6. Brus equation - Wikipedia

    en.wikipedia.org/wiki/Brus_equation

    The Brus equation or confinement energy equation can be used to describe the emission energy of quantum dot semiconductor nanocrystals in terms of the band gap energy E gap, the Planck constant h, the radius of the quantum dot r, as well as the effective mass of the excited electron m e * and of the excited hole m h *.

  7. Quantum efficiency - Wikipedia

    en.wikipedia.org/wiki/Quantum_efficiency

    Since the energy of a photon is inversely proportional to its wavelength, QE is often measured over a range of different wavelengths to characterize a device's efficiency at each photon energy level. For typical semiconductor photodetectors, QE drops to zero for photons whose energy is below the band gap .

  8. Refractive index and extinction coefficient of thin film ...

    en.wikipedia.org/wiki/Refractive_index_and...

    [1] [3] E g is the optical energy band gap of the material. A, B, and C depend on the band structure of the material. They are positive constants such that 4C − B 2 > 0. Finally, n(∞), a constant greater than unity, represents the value of n at E = ∞.

  9. Energy gap - Wikipedia

    en.wikipedia.org/wiki/Energy_gap

    In solid-state physics, an energy gap or band gap is an energy range in a solid where no electron states exist, i.e. an energy range where the density of states vanishes. Especially in condensed matter physics , an energy gap is often known more abstractly as a spectral gap , a term which need not be specific to electrons or solids.