Search results
Results From The WOW.Com Content Network
A function between topological spaces is called monotone if every fiber is a connected subspace of its domain. A function f : R → R {\displaystyle f:\mathbb {R} \to \mathbb {R} } is monotone in this topological sense if and only if it is non-increasing or non-decreasing , which is the usual meaning of " monotone function " in real analysis .
Then there is a morphism Spec(k(y)) → Y with image y, where k(y) is the residue field of y. The fiber of f over y is defined as the fiber product X × Y Spec(k(y)); this is a scheme over the field k(y). [3] This concept helps to justify the rough idea of a morphism of schemes X → Y as a family of schemes parametrized by Y.
In mathematics, a bundle map (or bundle morphism) is a morphism in the category of fiber bundles. There are two distinct, but closely related, notions of bundle map, depending on whether the fiber bundles in question have a common base space. There are also several variations on the basic theme, depending on precisely which category of fiber ...
Another example of a pullback comes from the theory of fiber bundles: given a bundle map π : E → B and a continuous map f : X → B, the pullback (formed in the category of topological spaces with continuous maps) X × B E is a fiber bundle over X called the pullback bundle. The associated commutative diagram is a morphism of fiber bundles.
In algebraic geometry, the Stein factorization, introduced by Karl Stein for the case of complex spaces, states that a proper morphism can be factorized as a composition of a finite mapping and a proper morphism with connected fibers. Roughly speaking, Stein factorization contracts the connected components of the fibers of a mapping to points.
In algebraic geometry, a branch of mathematics, a morphism f : X → Y of schemes is quasi-finite if it is of finite type and satisfies any of the following equivalent conditions: [1] Every point x of X is isolated in its fiber f −1 (f(x)). In other words, every fiber is a discrete (hence finite) set.
A principal -bundle, where denotes any topological group, is a fiber bundle: together with a continuous right action such that preserves the fibers of (i.e. if then for all ) and acts freely and transitively (meaning each fiber is a G-torsor) on them in such a way that for each and , the map sending to is a homeomorphism.
In mathematics, a projective bundle is a fiber bundle whose fibers are projective spaces. By definition, a scheme X over a Noetherian scheme S is a P n -bundle if it is locally a projective n -space; i.e., X × S U ≃ P U n {\displaystyle X\times _{S}U\simeq \mathbb {P} _{U}^{n}} and transition automorphisms are linear.