Search results
Results From The WOW.Com Content Network
In SI units, permeability is measured in henries per meter (H/m), or equivalently in newtons per ampere squared (N/A 2). The permeability constant μ 0, also known as the magnetic constant or the permeability of free space, is the proportionality between magnetic induction and magnetizing force when forming a magnetic field in a classical vacuum.
A dominant nonlinear response, however, can be derived from the hysteresis-type dependence of the material's magnetic permeability on the magnetic component of the incident electromagnetic wave (light) propagating through the material.
Nonlinear dynamics can occur when electromagnetic fields couple to matter that follows nonlinear dynamical laws. [29] This is studied, for example, in the subject of magnetohydrodynamics, which combines Maxwell theory with the Navier–Stokes equations. [30] Another branch of electromagnetism dealing with nonlinearity is nonlinear optics.
The permeability of ferromagnetic materials is not constant, but depends on H. In saturable materials the relative permeability increases with H to a maximum, then as it approaches saturation inverts and decreases toward one. [2] [3] Different materials have different saturation levels.
The split ring resonator was a microstructure design featured in the paper by Pendry et al in 1999 called, "Magnetism from Conductors and Enhanced Nonlinear Phenomena". [11] It proposed that the split ring resonator design, built out of nonmagnetic material, could enhance the magnetic activity unseen in natural materials.
The vacuum magnetic permeability (variously vacuum permeability, permeability of free space, permeability of vacuum, magnetic constant) is the magnetic permeability in a classical vacuum. It is a physical constant , conventionally written as μ 0 (pronounced "mu nought" or "mu zero").
In electromagnetism, permeance is the inverse of reluctance.In a magnetic circuit, permeance is a measure of the quantity of magnetic flux for a number of current-turns. A magnetic circuit almost acts as though the flux is conducted, therefore permeance is larger for large cross-sections of a material and smaller for smaller cross section lengths.
For a magnetic circuit constructed with an air gap or air gaps, the permeability of a hypothetical homogeneous material which would provide the same reluctance; (these "effective" above are sizes of a toroid core made from the same material which has the same magnetic properties as the core); Minimum cross-section, A min; Inductance factor, A L