When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Discrete logarithm - Wikipedia

    en.wikipedia.org/wiki/Discrete_logarithm

    The discrete logarithm problem is considered to be computationally intractable. That is, no efficient classical algorithm is known for computing discrete logarithms in general. A general algorithm for computing log b a in finite groups G is to raise b to larger and larger powers k until the desired a is found.

  3. Shor's algorithm - Wikipedia

    en.wikipedia.org/wiki/Shor's_algorithm

    The discrete logarithm algorithm and the factoring algorithm are instances of the period-finding algorithm, and all three are instances of the hidden subgroup problem. On a quantum computer, to factor an integer , Shor's algorithm runs in polynomial time, meaning the time taken is polynomial in ⁡. [6]

  4. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    Here, "quickly" means an algorithm that solves the task and runs in polynomial time (as opposed to, say, exponential time) exists, meaning the task completion time is bounded above by a polynomial function on the size of the input to the algorithm. The general class of questions that some algorithm can answer in polynomial time is "P" or "class ...

  5. Hidden subgroup problem - Wikipedia

    en.wikipedia.org/wiki/Hidden_subgroup_problem

    The hidden subgroup problem is especially important in the theory of quantum computing for the following reasons.. Shor's algorithm for factoring and for finding discrete logarithms (as well as several of its extensions) relies on the ability of quantum computers to solve the HSP for finite abelian groups.

  6. Computational hardness assumption - Wikipedia

    en.wikipedia.org/wiki/Computational_hardness...

    It is a major open problem to find an algorithm for integer factorization that runs in time polynomial in the size of representation (⁡). The security of many cryptographic protocols rely on the assumption that integer factorization is hard (i.e. cannot be solved in polynomial time).

  7. P (complexity) - Wikipedia

    en.wikipedia.org/wiki/P_(complexity)

    Polynomial-time algorithms are closed under composition. Intuitively, this says that if one writes a function that is polynomial-time assuming that function calls are constant-time, and if those called functions themselves require polynomial time, then the entire algorithm takes polynomial time. One consequence of this is that P is low for itself.

  8. NP-hardness - Wikipedia

    en.wikipedia.org/wiki/NP-hardness

    That is, assuming a solution for H takes 1 unit time, H ' s solution can be used to solve L in polynomial time. [1] [2] As a consequence, finding a polynomial time algorithm to solve a single NP-hard problem would give polynomial time algorithms for all the problems in the complexity class NP.

  9. Discrete logarithm records - Wikipedia

    en.wikipedia.org/wiki/Discrete_logarithm_records

    This team was able to compute discrete logarithms in GF(2 30750) using 25,481,219 core hours on clusters based on the Intel Xeon architecture. This computation was the first large-scale example using the elimination step of the quasi-polynomial algorithm. [9] Previous records in a finite field of characteristic 2 were announced by: