Search results
Results From The WOW.Com Content Network
(The zero ring has no prime ideals, because the ideal (0) is the whole ring.) An ideal I is prime if and only if its set-theoretic complement is multiplicatively closed. [3] Every nonzero ring contains at least one prime ideal (in fact it contains at least one maximal ideal), which is a direct consequence of Krull's theorem.
Given a polynomial p of degree d, the quotient ring of K[X] by the ideal generated by p can be identified with the vector space of the polynomials of degrees less than d, with the "multiplication modulo p" as a multiplication, the multiplication modulo p consisting of the remainder under the division by p of the (usual) product of polynomials.
The factor ring of a prime ideal is a prime ring in general and is an integral domain for commutative rings. [14] Radical ideal or semiprime ideal: A proper ideal I is called radical or semiprime if for any a in , if a n is in I for some n, then a is in I.
In other words, a projective variety is a projective algebraic set, whose homogeneous coordinate ring is an integral domain, the projective coordinates ring being defined as the quotient of the graded ring or the polynomials in n + 1 variables by the homogeneous (reduced) ideal defining the variety. Every projective algebraic set may be ...
A proper ideal P of R is called a prime ideal if for any elements , we have that implies either or . Equivalently, P is prime if for any ideals I, J we have that IJ ⊆ P implies either I ⊆ P or J ⊆ P. This latter formulation illustrates the idea of ideals as generalizations of elements.
The Zariski topology defines a topology on the spectrum of a ring (the set of prime ideals). [2] In this formulation, the Zariski-closed sets are taken to be the sets = {()} where A is a fixed commutative ring and I is an ideal. This is defined in analogy with the classical Zariski topology, where closed sets in affine space are those defined ...
Every ring homomorphism: induces a continuous map (): (since the preimage of any prime ideal in is a prime ideal in ). In this way, Spec {\displaystyle \operatorname {Spec} } can be seen as a contravariant functor from the category of commutative rings to the category of topological spaces .
A ring R is prime if and only if the zero ideal {0} is a prime ideal in the noncommutative sense. This being the case, the equivalent conditions for prime ideals yield the following equivalent conditions for R to be a prime ring: For any two ideals A and B of R, AB = {0} implies A = {0} or B = {0}.