Search results
Results From The WOW.Com Content Network
In humans, the epicranial aponeurosis originates from the external occipital protuberance and highest nuchal lines of the occipital bone. [1] It merges with the occipitofrontalis muscle . In front, it forms a short and narrow prolongation between its union with the frontalis muscle (the frontal part of the occipitofrontalis muscle).
An action potential occurs when the membrane potential of a specific cell rapidly rises and falls. [1] This depolarization then causes adjacent locations to similarly depolarize. Action potentials occur in several types of excitable cells, which include animal cells like neurons and muscle cells, as well as some plant cells.
Management consists of vigilant observation over days to detect progression and, if required, manage complications (e.g. hemorrhagic shock, unconjugated hyperbilirubinemia and jaundice from hemolyzed red blood cells). The subgaleal space is capable of holding up to 40% of a newborn baby's blood and can therefore result in acute shock and death.
Rheobase is a measure of membrane potential excitability. In neuroscience, rheobase is the minimal current amplitude of infinite duration that results in the depolarization threshold of the cell membranes being reached, such as an action potential or the contraction of a muscle. [1]
An aponeurosis (/ ˌ æ p ə nj ʊəˈr oʊ s ɪ s /; pl.: aponeuroses) is a flattened tendon [1] by which muscle attaches to bone or fascia. [2] Aponeuroses exhibit an ordered arrangement of collagen fibres, thus attaining high tensile strength in a particular direction while being vulnerable to tensional or shear forces in other directions. [ 1 ]
The signal is a short electrical pulse called action potential or 'spike'. Fig 2. Time course of neuronal action potential ("spike"). Note that the amplitude and the exact shape of the action potential can vary according to the exact experimental technique used for acquiring the signal.
A subgaleal shunt is usually a temporary measure used in infants who are too small or premature to tolerate other shunt types. The surgeon forms a pocket beneath the epicranial aponeurosis (the subgaleal space) and allows CSF to drain from the ventricles, creating a fluid-filled swelling on the baby's scalp.
Figure FHN: To mimick the action potential, the FitzHugh–Nagumo model and its relatives use a function g(V) with negative differential resistance (a negative slope on the I vs. V plot). For comparison, a normal resistor would have a positive slope, by Ohm's law I = GV, where the conductance G is the inverse of resistance G=1/R.