Search results
Results From The WOW.Com Content Network
Further studies of the Hill reaction were made in 1957 by plant physiologist Daniel I. Arnon. Arnon studied the Hill reaction using a natural electron acceptor, NADP. He demonstrated the light-independent reaction, observing the reaction under dark conditions with an abundance of carbon dioxide. He found that carbon fixation was independent of ...
The Calvin cycle, light-independent reactions, bio synthetic phase, dark reactions, or photosynthetic carbon reduction (PCR) cycle [1] of photosynthesis is a series of chemical reactions that convert carbon dioxide and hydrogen-carrier compounds into glucose. The Calvin cycle is present in all photosynthetic eukaryotes and also many ...
Light-dependent reactions of photosynthesis at the thylakoid membrane. Light-dependent reactions are certain photochemical reactions involved in photosynthesis, the main process by which plants acquire energy. There are two light dependent reactions: the first occurs at photosystem II (PSII) and the second occurs at photosystem I (PSI).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Kirlian photograph of two coins. Kirlian photography is a collection of photographic techniques used to capture the phenomenon of electrical coronal discharges.It is named after Soviet scientist Semyon Kirlian, who, in 1939, accidentally discovered that if an object on a photographic plate is connected to a high-voltage source, an image is produced on the photographic plate. [1]
Photosynthesis occurs in two stages. In the first stage, light-dependent reactions or light reactions capture the energy of light and use it to make the hydrogen carrier NADPH and the energy-storage molecule ATP. During the second stage, the light-independent reactions use these products to capture and reduce carbon dioxide.
In light microscopy, oil immersion is a technique used to increase the resolving power of a microscope. This is achieved by immersing both the objective lens and the specimen in a transparent oil of high refractive index , thereby increasing the numerical aperture of the objective lens.
The main difference is that instead of finding the most likely model, these techniques omit the models, which are not compatible with data. [3] [4] The example shown in the figure on the right illustrates a model-based FDI technique for an aircraft elevator reactive controller through the use of a truth table and a state chart.