When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Skip list - Wikipedia

    en.wikipedia.org/wiki/Skip_list

    function lookupByPositionIndex(i) node ← head i ← i + 1 # don't count the head as a step for level from top to bottom do while i ≥ node.width[level] do # if next step is not too far i ← i - node.width[level] # subtract the current width node ← node.next[level] # traverse forward at the current level repeat repeat return node.value end ...

  3. Branch and bound - Wikipedia

    en.wikipedia.org/wiki/Branch_and_bound

    The following is the skeleton of a generic branch and bound algorithm for minimizing an arbitrary objective function f. [3] To obtain an actual algorithm from this, one requires a bounding function bound, that computes lower bounds of f on nodes of the search tree, as well as a problem-specific branching rule.

  4. Branch and cut - Wikipedia

    en.wikipedia.org/wiki/Branch_and_cut

    This description assumes the ILP is a maximization problem.. The method solves the linear program without the integer constraint using the regular simplex algorithm.When an optimal solution is obtained, and this solution has a non-integer value for a variable that is supposed to be integer, a cutting plane algorithm may be used to find further linear constraints which are satisfied by all ...

  5. Binary search - Wikipedia

    en.wikipedia.org/wiki/Binary_search

    Binary search Visualization of the binary search algorithm where 7 is the target value Class Search algorithm Data structure Array Worst-case performance O (log n) Best-case performance O (1) Average performance O (log n) Worst-case space complexity O (1) Optimal Yes In computer science, binary search, also known as half-interval search, logarithmic search, or binary chop, is a search ...

  6. List-labeling problem - Wikipedia

    en.wikipedia.org/wiki/List-labeling_problem

    In the case where = (+ ()), there is a lower bound of (⁡) list labeling cost for deterministic algorithms. [6] Furthermore, the same lower bound holds for smooth algorithms, which are those whose only relabeling operation assigns labels evenly in a range of items [10] This lower bound is surprisingly strong in that it applies in the offline ...

  7. Computational complexity - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity

    As the amount of resources required to run an algorithm generally varies with the size of the input, the complexity is typically expressed as a function n → f(n), where n is the size of the input and f(n) is either the worst-case complexity (the maximum of the amount of resources that are needed over all inputs of size n) or the average-case ...

  8. A* search algorithm - Wikipedia

    en.wikipedia.org/wiki/A*_search_algorithm

    The algorithm described so far only gives the length of the shortest path. To find the actual sequence of steps, the algorithm can be easily revised so that each node on the path keeps track of its predecessor. After this algorithm is run, the ending node will point to its predecessor, and so on, until some node's predecessor is the start node.

  9. Element distinctness problem - Wikipedia

    en.wikipedia.org/wiki/Element_distinctness_problem

    The optimal algorithm is by Andris Ambainis. [7] Yaoyun Shi first proved a tight lower bound when the size of the range is sufficiently large. [8] Ambainis [9] and Kutin [10] independently (and via different proofs) extended his work to obtain the lower bound for all functions.