When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Errors-in-variables model - Wikipedia

    en.wikipedia.org/wiki/Errors-in-variables_model

    Linear errors-in-variables models were studied first, probably because linear models were so widely used and they are easier than non-linear ones. Unlike standard least squares regression (OLS), extending errors in variables regression (EiV) from the simple to the multivariable case is not straightforward, unless one treats all variables in the same way i.e. assume equal reliability.

  3. Mean absolute error - Wikipedia

    en.wikipedia.org/wiki/Mean_absolute_error

    These all summarize performance in ways that disregard the direction of over- or under- prediction; a measure that does place emphasis on this is the mean signed difference. Where a prediction model is to be fitted using a selected performance measure, in the sense that the least squares approach is related to the mean squared error, the ...

  4. List of common 3D test models - Wikipedia

    en.wikipedia.org/wiki/List_of_common_3D_test_models

    Keenan's 3D Model Repository hosted by the Carnegie Mellon University; HeiCuBeDa Hilprecht – Heidelberg Cuneiform Benchmark Dataset for the Hilprecht Collection a collection of almost 2.000 cuneiform tablets for bulk-download acquired with a high-resolution 3D-scanner. Available under a CC BY license and quotable by digital object identifiers.

  5. Verification and validation of computer simulation models

    en.wikipedia.org/wiki/Verification_and...

    Comparing curves with fixed sample size tradeoffs between model builder's risk and model user's risk can be seen easily in the risk curves. [7] If model builder's risk, model user's risk, and the upper and lower limits for the range of accuracy are all specified then the sample size needed can be calculated. [7]

  6. Mean absolute scaled error - Wikipedia

    en.wikipedia.org/wiki/Mean_absolute_scaled_error

    Asymptotic normality of the MASE: The Diebold-Mariano test for one-step forecasts is used to test the statistical significance of the difference between two sets of forecasts. [ 5 ] [ 6 ] [ 7 ] To perform hypothesis testing with the Diebold-Mariano test statistic, it is desirable for D M ∼ N ( 0 , 1 ) {\displaystyle DM\sim N(0,1)} , where D M ...

  7. Surrogate model - Wikipedia

    en.wikipedia.org/wiki/Surrogate_model

    A surrogate model is an engineering method used when an outcome of interest cannot be easily measured or computed, so an approximate mathematical model of the outcome is used instead. Most engineering design problems require experiments and/or simulations to evaluate design objective and constraint functions as a function of design variables.

  8. Heteroskedasticity-consistent standard errors - Wikipedia

    en.wikipedia.org/wiki/Heteroskedasticity...

    Of the four widely available different options, often denoted as HC0-HC3, the HC3 specification appears to work best, with tests relying on the HC3 estimator featuring better power and closer proximity to the targeted size, especially in small samples. The larger the sample, the smaller the difference between the different estimators. [12]

  9. Least absolute deviations - Wikipedia

    en.wikipedia.org/wiki/Least_absolute_deviations

    Least absolute deviations (LAD), also known as least absolute errors (LAE), least absolute residuals (LAR), or least absolute values (LAV), is a statistical optimality criterion and a statistical optimization technique based on minimizing the sum of absolute deviations (also sum of absolute residuals or sum of absolute errors) or the L 1 norm of such values.