Search results
Results From The WOW.Com Content Network
In molecular biology, fibrous proteins or scleroproteins are one of the three main classifications of protein structure (alongside globular and membrane proteins). [1] Fibrous proteins are made up of elongated or fibrous polypeptide chains which form filamentous and sheet-like structures. This kind of protein can be distinguished from globular ...
Protein structure is the three-dimensional arrangement of atoms in an amino acid-chain molecule. Proteins are polymers – specifically polypeptides – formed from sequences of amino acids, which are the monomers of the polymer. A single amino acid monomer may also be called a residue, which indicates a repeating unit of a polymer.
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, responding to stimuli, providing structure to cells and organisms, and transporting molecules from one location ...
As suggested by the first model, all IF proteins appear to have a central alpha-helical rod domain that is composed of four alpha-helical segments (named as 1A, 1B, 2A and 2B) separated by three linker regions. [9] [10] The central building block of an intermediate filament is a pair of two intertwined proteins that is called a coiled-coil ...
Several protein residues can be methylated, most notably the positive groups of lysine and arginine. Arginine residues interact with the nucleic acid phosphate backbone and commonly form hydrogen bonds with the base residues, particularly guanine, in protein–DNA complexes. Lysine residues can be singly, doubly and even triply methylated.
A coiled coil is a structural motif in proteins in which 2–7 [1] alpha-helices are coiled together like the strands of a rope. (Dimers and trimers are the most common types.) They have been found in roughly 5-10% of proteins and have a variety of functions. [2] They are one of the most widespread motifs found in protein-protein interactions.
Leucine zippers are present in both eukaryotic and prokaryotic regulatory proteins, but are mainly a feature of eukaryotes. They can also be annotated simply as ZIPs, and ZIP-like motifs have been found in proteins other than transcription factors and are thought to be one of the general protein modules for protein–protein interactions. [5]
Protein synthesis is a very similar process for both prokaryotes and eukaryotes but there are some distinct differences. [1] Protein synthesis can be divided broadly into two phases: transcription and translation. During transcription, a section of DNA encoding a protein, known as a gene, is converted into a molecule called messenger RNA (mRNA).