Search results
Results From The WOW.Com Content Network
Two variables are perfectly collinear if there is an exact linear relationship between the two, so the correlation between them is equal to 1 or −1. That is, X 1 and X 2 are perfectly collinear if there exist parameters λ 0 {\displaystyle \lambda _{0}} and λ 1 {\displaystyle \lambda _{1}} such that, for all observations i , we have
Typographical symbols and punctuation marks are marks and symbols used in typography with a variety of purposes such as to help with legibility and accessibility, or to identify special cases. This list gives those most commonly encountered with Latin script. For a far more comprehensive list of symbols and signs, see List of Unicode characters.
Simply, a collineation is a one-to-one map from one projective space to another, or from a projective space to itself, such that the images of collinear points are themselves collinear. One may formalize this using various ways of presenting a projective space. Also, the case of the projective line is special, and hence generally treated ...
Points that are incident with the same line are said to be collinear. The set of all points incident with the same line is called a range. If P 1 = (x 1, y 1, z 1), P 2 = (x 2, y 2, z 2), and P 3 = (x 3, y 3, z 3), then these points are collinear if and only if
A complex number is an expression of the form a + bi, where a and b are real numbers, and i is an abstract symbol, the so-called imaginary unit, whose meaning will be explained further below. For example, 2 + 3i is a complex number. [3]
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
It is essentially the only projective invariant of a quadruple of collinear points; this underlies its importance for projective geometry. The cross-ratio had been defined in deep antiquity, possibly already by Euclid, and was considered by Pappus, who noted its key invariance property. It was extensively studied in the 19th century. [1]