Search results
Results From The WOW.Com Content Network
At frequencies other than 1 kHz, the loudness level in phons is calibrated according to the frequency response of human hearing, via a set of equal-loudness contours, and then the loudness level in phons is mapped to loudness in sones via the same power law. Loudness N in sones (for L N > 40 phon): [5]
The horizontal axis shows frequency in Hertz. In acoustics, loudness is the subjective perception of sound pressure.More formally, it is defined as the "attribute of auditory sensation in terms of which sounds can be ordered on a scale extending from quiet to loud". [1]
By definition, visible light is the part of the EM spectrum the human eye is the most sensitive to. Visible light (and near-infrared light) is typically absorbed and emitted by electrons in molecules and atoms that move from one energy level to another. This action allows the chemical mechanisms that underlie human vision and plant photosynthesis.
Sound waves that have frequencies below 16 Hz are called infrasonic and those above 20 kHz are called ultrasonic. Sound is a mechanical wave and as such consists physically in oscillatory elastic compression and in oscillatory displacement of a fluid .
Sound power or acoustic power is the rate at which sound energy is emitted, reflected, transmitted or received, per unit time. [1] It is defined [2] as "through a surface, the product of the sound pressure, and the component of the particle velocity, at a point on the surface in the direction normal to the surface, integrated over that surface."
As a photon is absorbed by an atom, it excites the atom, elevating an electron to a higher energy level (one that is on average farther from the nucleus). When an electron in an excited molecule or atom descends to a lower energy level, it emits a photon of light at a frequency corresponding to the energy difference.
Energy of a typical microwave oven photon (2.45 GHz) (1×10 −5 eV) [4] [5] 10 −23 2×10 −23 J: Average kinetic energy of translational motion of a molecule in the Boomerang Nebula, the coldest place known outside of a laboratory, at a temperature of 1 kelvin [6] [7] 10 −22 2–3000×10 −22 J Energy of infrared light photons [8] 10 − ...
An increase in energy level from E 1 to E 2 resulting from absorption of a photon represented by the red squiggly arrow, and whose energy is h ν. A decrease in energy level from E 2 to E 1 resulting in emission of a photon represented by the red squiggly arrow, and whose energy is h ν.