Ads
related to: critical flow calculation formula in excel
Search results
Results From The WOW.Com Content Network
Gradually varied flow occurs when the change in flow depth per change in flow distance is very small. In this case, hydrostatic relationships developed for uniform flow still apply. Examples of this include the backwater behind an in-stream structure (e.g. dam, sluice gate, weir, etc.), when there is a constriction in the channel, and when ...
The choked velocity is a function of the upstream pressure but not the downstream. Although the velocity is constant, the mass flow rate is dependent on the density of the upstream gas, which is a function of the upstream pressure. Flow velocity reaches the speed of sound in the orifice, and it may be termed a sonic orifice.
Its value depends on the flow's Reynolds number Re and on the pipe's relative roughness ε / D. The log function is understood to be base-10 (as is customary in engineering fields): if x = log(y), then y = 10 x. The ln function is understood to be base-e: if x = ln(y), then y = e x.
In free-surface flow, the nature of the flow (supercritical or subcritical) depends upon whether the Froude number is greater than or less than unity. One can easily see the line of "critical" flow in a kitchen or bathroom sink. Leave it unplugged and let the faucet run. Near the place where the stream of water hits the sink, the flow is ...
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.
Most charts or tables indicate the type of friction factor, or at least provide the formula for the friction factor with laminar flow. If the formula for laminar flow is f = 16 / Re , it is the Fanning factor f, and if the formula for laminar flow is f D = 64 / Re , it is the Darcy–Weisbach factor f D.
An increase in q would cause the M function to move to the right and slightly up, giving the flow access to more momentum at its critical point. It follows that a decrease in the q value would move the M function down and to the left, decreasing the momentum available to the flow at its critical value. This is shown graphically Figure 7 below.
The Prandtl–Glauert transformation is a mathematical technique which allows solving certain compressible flow problems by incompressible-flow calculation methods. It also allows applying incompressible-flow data to compressible-flow cases.