Search results
Results From The WOW.Com Content Network
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.
In computer science, a lookup table (LUT) is an array that replaces runtime computation of a mathematical function with a simpler array indexing operation, in a process termed as direct addressing. The savings in processing time can be significant, because retrieving a value from memory is often faster than carrying out an "expensive ...
MATLAB (an abbreviation of "MATrix LABoratory" [18]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks.MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages.
Both MATLAB and GNU Octave natively support linear algebra operations such as matrix multiplication, matrix inversion, and the numerical solution of system of linear equations, even using the Moore–Penrose pseudoinverse. [7] [8] The Nial example of the inner product of two arrays can be implemented using the native matrix multiplication operator.
In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the fastest algorithm for matrix multiplication is of major practical ...
This toolbox is a collection of MATLAB/OCTAVE routines for model order reduction of linear dynamical systems based on the solution of matrix equations. The implementation is based on spectral projection methods, e.g., methods based on the matrix sign function and the matrix disk function.
The first row of coefficients at the bottom of the table gives the fifth-order accurate method, and the second row gives the fourth-order accurate method. This shows the computational time in real time used during a 3-body simulation evolved with the Runge-Kutta-Fehlberg method.
In mathematics, a Young tableau (/ t æ ˈ b l oʊ, ˈ t æ b l oʊ /; plural: tableaux) is a combinatorial object useful in representation theory and Schubert calculus.It provides a convenient way to describe the group representations of the symmetric and general linear groups and to study their properties.