When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. p-value - Wikipedia

    en.wikipedia.org/wiki/P-value

    In null-hypothesis significance testing, the p-value [note 1] is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. [2] [3] A very small p-value means that such an extreme observed outcome would be very unlikely under the null hypothesis.

  3. Misuse of p-values - Wikipedia

    en.wikipedia.org/wiki/Misuse_of_p-values

    [3] [6] The p-value does not indicate the size or importance of the observed effect. [2] A small p-value can be observed for an effect that is not meaningful or important. In fact, the larger the sample size, the smaller the minimum effect needed to produce a statistically significant p-value (see effect size).

  4. Statistical significance - Wikipedia

    en.wikipedia.org/wiki/Statistical_significance

    To determine whether a result is statistically significant, a researcher calculates a p-value, which is the probability of observing an effect of the same magnitude or more extreme given that the null hypothesis is true. [5] [12] The null hypothesis is rejected if the p-value is less than (or equal to) a predetermined level, .

  5. Family-wise error rate - Wikipedia

    en.wikipedia.org/wiki/Family-wise_error_rate

    The following table defines the possible outcomes when testing multiple null hypotheses. Suppose we have a number m of null hypotheses, denoted by: H 1, H 2, ..., H m. Using a statistical test, we reject the null hypothesis if the test is declared significant. We do not reject the null hypothesis if the test is non-significant.

  6. One- and two-tailed tests - Wikipedia

    en.wikipedia.org/wiki/One-_and_two-tailed_tests

    For a given significance level in a two-tailed test for a test statistic, the corresponding one-tailed tests for the same test statistic will be considered either twice as significant (half the p-value) if the data is in the direction specified by the test, or not significant at all (p-value above ) if the data is in the direction opposite of ...

  7. Fisher's method - Wikipedia

    en.wikipedia.org/wiki/Fisher's_method

    Under Fisher's method, two small p-values P 1 and P 2 combine to form a smaller p-value.The darkest boundary defines the region where the meta-analysis p-value is below 0.05.. For example, if both p-values are around 0.10, or if one is around 0.04 and one is around 0.25, the meta-analysis p-value is around 0

  8. Statistical hypothesis test - Wikipedia

    en.wikipedia.org/wiki/Statistical_hypothesis_test

    For example, with a chosen significance level α = 0.05, from the Z-table, a one-tailed critical value of approximately 1.645 can be obtained. The one-tailed critical value C α ≈ 1.645 corresponds to the chosen significance level. The critical region [C α, ∞) is realized as the tail of the standard normal distribution.

  9. Levene's test - Wikipedia

    en.wikipedia.org/wiki/Levene's_test

    If the resulting p-value of Levene's test is less than some significance level (typically 0.05), the obtained differences in sample variances are unlikely to have occurred based on random sampling from a population with equal variances. Thus, the null hypothesis of equal variances is rejected and it is concluded that there is a difference ...