Search results
Results From The WOW.Com Content Network
An XNOR gate is a basic comparator, because its output is "1" only if its two input bits are equal. The analog equivalent of digital comparator is the voltage comparator . Many microcontrollers have analog comparators on some of their inputs that can be read or trigger an interrupt .
To achieve better performance in the same area or the same performance in a smaller area, multiplier designs may use higher order compressors such as 7:3 compressors; [8] [7] implement the compressors in faster logic (such transmission gate logic, pass transistor logic, domino logic); [13] connect the compressors in a different pattern; or some ...
Several important complexity measures can be defined on Boolean circuits, including circuit depth, circuit size, and the number of alternations between AND gates and OR gates. For example, the size complexity of a Boolean circuit is the number of gates in the circuit. There is a natural connection between circuit size complexity and time ...
4-bit adder with logical block diagram shown Decimal 4-digit ripple carry adder. FA = full adder, HA = half adder. It is possible to create a logical circuit using multiple full adders to add N-bit numbers. Each full adder inputs a , which is the of the previous adder.
Gate-level diagram of a single bit 4-to-2 priority encoder. I(3) has the highest priority. I(3) has the highest priority. A truth table of a single bit 4-to-2 priority encoder is shown, where the inputs are shown in decreasing order of priority left-to-right, and "x" indicates a don't care term - i.e. any input value there yields the same ...
Together with the AND gate and the OR gate, any function in binary mathematics may be implemented. All other logic gates may be made from these three. [3] The terms "programmable inverter" or "controlled inverter" do not refer to this gate; instead, these terms refer to the XOR gate because it can conditionally function like a NOT gate. [1] [3]
The very fastest shifters are implemented as full crossbars, in a manner similar to the 4-bit shifter depicted above, only larger. These incur the least delay, with the output always a single gate delay behind the input to be shifted (after allowing the small time needed for the shift count decoder to settle; this penalty, however, is only incurred when the shift count changes).
When implemented in bit serial hardware, the generator polynomial uniquely describes the bit assignment; the first bit transmitted is always the coefficient of the highest power of , and the last bits transmitted are the CRC remainder (), starting with the coefficient of and ending with the coefficient of , a.k.a. the coefficient of 1.