Ads
related to: internal spur gear generator motor assembly system with speed lock parts
Search results
Results From The WOW.Com Content Network
The Geneva drive or Geneva mechanism is a gear mechanism that translates a continuous rotation movement into intermittent rotary motion. The rotating drive wheel is usually equipped with a pin that reaches into a slot located in the other wheel (driven wheel) that advances it by one step at a time. The drive wheel also has an elevated circular ...
Spur-gear differential. A spur-gear differential has equal-sized spur gears at each end, each of which is connected to an output shaft. [8] The input torque (i.e. from the engine or transmission) is applied to the differential via the rotating carrier. [8] Pinion pairs are located within the carrier and rotate freely on pins supported by the ...
Drum Motor with Planetary Gear Drum Motor With Helical Spur Gear. The drum motor concept was first recorded in 1928, but it was not used until the early 1950s, when it was first produced specifically for conveyor belt applications. The goal was to produce a compact, totally enclosed single component drive unit with high efficiency and lower ...
These systems are alternatives to a traditional limited-slip differential. The systems harness various chassis sensors such as speed sensors, anti-lock braking system (ABS) sensors, accelerometers, and microcomputers to electronically monitor wheel slip and vehicle motion. When the chassis control system determines a wheel is slipping, the ...
The key feature of the Ward Leonard control system is the ability to smoothly vary the speed of a DC motor, including reversing it, by controlling the field and hence the output voltage of a DC generator, as well as the field of the motor itself. As the speed of a DC motor is dictated by the supplied voltage, this gives simple speed control ...
The basic concept of strain wave gearing (SWG) was introduced by C.W. Musser in a 1957 patent [5] [6] while he was an advisor at United Shoe Machinery Corp (USM). It was first used successfully in 1960 by USM Co. and later by Hasegawa Gear Works under license of USM.
A rack and pinion has roughly the same purpose as a worm gear with a rack replacing the gear, in that both convert torque to linear force. However the rack and pinion generally provides higher linear speed — since a full turn of the pinion displaces the rack by an amount equal to the pinion's pitch circle whereas a full rotation of the worm screw only displaces the rack by one tooth width.
Originally an ellipsograph. As a mechanism, it uses the fact that a circle and a straight line are special cases of an ellipse. It is based on much the same kinematic principle as Cardan's straight line mechanism (above) and could be considered as a spur gear with two teeth in a ring gear with four teeth. It has been used in the Baker-Cross ...