Search results
Results From The WOW.Com Content Network
where r is the incircle radius and R is the circumcircle radius; hence the circumradius is at least twice the inradius (Euler's triangle inequality), with equality only in the equilateral case. [ 7 ] [ 8 ]
In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter .
Circumcircle, the circumscribed circle of a triangle, which always exists for a given triangle. Cyclic polygon, a general polygon that can be circumscribed by a circle. The vertices of this polygon are concyclic points. All triangles are cyclic polygons. Cyclic quadrilateral, a special case of a cyclic polygon.
If the incircle is tangent to the sides AB, BC, CD, DA at T 1, T 2, T 3, T 4 respectively, and if N 1, N 2, N 3, N 4 are the isotomic conjugates of these points with respect to the corresponding sides (that is, AT 1 = BN 1 and so on), then the Nagel point of the tangential quadrilateral is defined as the intersection of the lines N 1 N 3 and N ...
A set of sides that can form a cyclic quadrilateral can be arranged in any of three distinct sequences each of which can form a cyclic quadrilateral of the same area in the same circumcircle (the areas being the same according to Brahmagupta's area formula). Any two of these cyclic quadrilaterals have one diagonal length in common. [17]: p. 84
In every triangle a unique circle, called the incircle, can be inscribed such that it is tangent to each of the three sides of the triangle. [19] About every triangle a unique circle, called the circumcircle, can be circumscribed such that it goes through each of the triangle's three vertices. [20]
Thus the incircle of the tangential triangle coincides with the circumcircle of the reference triangle. The circumcenter of the tangential triangle is on the reference triangle's Euler line , [ 1 ] : p. 104, p. 242 as is the center of similitude of the tangential triangle and the orthic triangle (whose vertices are at the feet of the altitudes ...
Every circle has an inscribed triangle with any three given angle measures (summing of course to 180°), and every triangle can be inscribed in some circle (which is called its circumscribed circle or circumcircle). Every triangle has an inscribed circle, called the incircle.