Search results
Results From The WOW.Com Content Network
Hasse diagram of a complemented lattice. A point p and a line l of the Fano plane are complements if and only if p does not lie on l.. In the mathematical discipline of order theory, a complemented lattice is a bounded lattice (with least element 0 and greatest element 1), in which every element a has a complement, i.e. an element b satisfying a ∨ b = 1 and a ∧ b = 0.
In particular, a bounded-lattice homomorphism (usually called just "lattice homomorphism") between two bounded lattices and should also have the following property: =, =. In the order-theoretic formulation, these conditions just state that a homomorphism of lattices is a function preserving binary meets and joins.
A complete lattice is bounded. 11. A heyting algebra is bounded. (def) 12. A bounded lattice is a lattice. (def) 13. A heyting algebra is residuated. 14. A residuated lattice is a lattice. (def) 15. A distributive lattice is modular. [3] 16. A modular complemented lattice is relatively complemented. [4] 17. A boolean algebra is relatively ...
Every interval of a geometric lattice (the subset of the lattice between given lower and upper bound elements) is itself geometric; taking an interval of a geometric lattice corresponds to forming a minor of the associated matroid. Geometric lattices are complemented, and because of the interval property they are also relatively complemented. [7]
The mathematics behind formal concept analysis therefore is the theory of complete lattices. Another representation is obtained as follows: A subset of a complete lattice is itself a complete lattice (when ordered with the induced order) if and only if it is the image of an increasing and idempotent (but not necessarily extensive) self-map.
In mathematics, particularly in order theory, a pseudocomplement is one generalization of the notion of complement. In a lattice L with bottom element 0, an element x ∈ L is said to have a pseudocomplement if there exists a greatest element x* ∈ L with the property that x ∧ x* = 0. More formally, x* = max{ y ∈ L | x ∧ y = 0 }.
Lattices, partial orders in which each pair of elements has a greatest lower bound and a least upper bound. Many different types of lattice have been studied; see map of lattices for a list. Partially ordered sets (or posets ), orderings in which some pairs are comparable and others might not be
Modular lattices arise naturally in algebra and in many other areas of mathematics. In these scenarios, modularity is an abstraction of the 2nd Isomorphism Theorem . For example, the subspaces of a vector space (and more generally the submodules of a module over a ring ) form a modular lattice.