Search results
Results From The WOW.Com Content Network
The skew-polynomial ring is defined similarly for a ring R and a ring endomorphism f of R, by extending the multiplication from the relation X ...
In mathematics, the ring of polynomial functions on a vector space V over a field k gives a coordinate-free analog of a polynomial ring. It is denoted by k[V]. If V is finite dimensional and is viewed as an algebraic variety, then k[V] is precisely the coordinate ring of V. The explicit definition of the ring can be given as follows.
The Weyl algebras are Ore extensions, with R any commutative polynomial ring, σ the identity ring endomorphism, and δ the polynomial derivative. Ore algebras are a class of iterated Ore extensions under suitable constraints that permit to develop a noncommutative extension of the theory of Gröbner bases.
If the degree of the polynomial P is defined in the usual way, the polynomial P is called monic if at least one of its terms of highest degree has coefficient equal to 1. Every commutative ring is a PI-ring, satisfying the polynomial identity XY − YX = 0. Therefore, PI-rings are usually taken as close generalizations of commutative rings.
In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers.
The ring of formal power series over the complex numbers is a UFD, but the subring of those that converge everywhere, in other words the ring of entire functions in a single complex variable, is not a UFD, since there exist entire functions with an infinity of zeros, and thus an infinity of irreducible factors, while a UFD factorization must be ...
The ring of polynomials in finitely-many variables over the integers or a field is Noetherian. Rings that are not Noetherian tend to be (in some sense) very large. Here are some examples of non-Noetherian rings: The ring of polynomials in infinitely-many variables, X 1, X 2, X 3, etc.
The twisted polynomial ring {} is defined as the set of polynomials in the variable and coefficients in . It is endowed with a ring structure with the usual addition, but with a non-commutative multiplication that can be summarized with the relation τ x = x p τ {\displaystyle \tau x=x^{p}\tau } for x ∈ k {\displaystyle x\in k} .