Search results
Results From The WOW.Com Content Network
Just as the polynomial ring in n variables with coefficients in the commutative ring R is the free commutative R-algebra of rank n, the noncommutative polynomial ring in n variables with coefficients in the commutative ring R is the free associative, unital R-algebra on n generators, which is noncommutative when n > 1.
Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.
The ring of polynomials in finitely-many variables over the integers or a field is Noetherian. Rings that are not Noetherian tend to be (in some sense) very large. Here are some examples of non-Noetherian rings: The ring of polynomials in infinitely-many variables, X 1, X 2, X 3, etc.
The ring of formal power series over the complex numbers is a UFD, but the subring of those that converge everywhere, in other words the ring of entire functions in a single complex variable, is not a UFD, since there exist entire functions with an infinity of zeros, and thus an infinity of irreducible factors, while a UFD factorization must be ...
The set of all polynomials with real coefficients that are divisible by the polynomial + is an ideal in the ring of all real-coefficient polynomials [] . Take a ring R {\displaystyle R} and positive integer n {\displaystyle n} .
The Weyl algebras are Ore extensions, with R any commutative polynomial ring, σ the identity ring endomorphism, and δ the polynomial derivative. Ore algebras are a class of iterated Ore extensions under suitable constraints that permit to develop a noncommutative extension of the theory of Gröbner bases.
In mathematics, the ring of polynomial functions on a vector space V over a field k gives a coordinate-free analog of a polynomial ring. It is denoted by k[V]. If V is finite dimensional and is viewed as an algebraic variety, then k[V] is precisely the coordinate ring of V. The explicit definition of the ring can be given as follows.
Given a subset V of P n, let I(V) be the ideal generated by all homogeneous polynomials vanishing on V. For any projective algebraic set V, the coordinate ring of V is the quotient of the polynomial ring by this ideal. [1]: 10 A quasi-projective variety is a Zariski open subset of a projective variety.