When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Degrees of freedom (statistics) - Wikipedia

    en.wikipedia.org/.../Degrees_of_freedom_(statistics)

    Here, the degrees of freedom arises from the residual sum-of-squares in the numerator, and in turn the n − 1 degrees of freedom of the underlying residual vector {¯}. In the application of these distributions to linear models, the degrees of freedom parameters can take only integer values.

  3. Inverse-Wishart distribution - Wikipedia

    en.wikipedia.org/wiki/Inverse-Wishart_distribution

    In statistics, the inverse Wishart distribution, also called the inverted Wishart distribution, is a probability distribution defined on real-valued positive-definite matrices. In Bayesian statistics it is used as the conjugate prior for the covariance matrix of a multivariate normal distribution.

  4. Wishart distribution - Wikipedia

    en.wikipedia.org/wiki/Wishart_distribution

    The positive integer n is the number of degrees of freedom. Sometimes this is written W(V, p, n). For n ≥ p the matrix S is invertible with probability 1 if V is invertible. If p = V = 1 then this distribution is a chi-squared distribution with n degrees of freedom.

  5. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    In linear algebra, an invertible matrix is a square matrix which has an inverse. In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by an inverse to undo the operation. An invertible matrix multiplied by its inverse yields the identity matrix. Invertible matrices are the same size as their ...

  6. Chi-squared distribution - Wikipedia

    en.wikipedia.org/wiki/Chi-squared_distribution

    If is a -dimensional Gaussian random vector with mean vector and rank covariance matrix , then = () is chi-squared distributed with degrees of freedom. The sum of squares of statistically independent unit-variance Gaussian variables which do not have mean zero yields a generalization of the chi-squared distribution called the noncentral chi ...

  7. Proofs involving ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_ordinary...

    Note in the later section “Maximum likelihood” we show that under the additional assumption that errors are distributed normally, the estimator ^ is proportional to a chi-squared distribution with n – p degrees of freedom, from which the formula for expected value would immediately follow. However the result we have shown in this section ...

  8. Student's t-distribution - Wikipedia

    en.wikipedia.org/wiki/Student's_t-distribution

    For the statistic t, with ν degrees of freedom, A(t | ν) is the probability that t would be less than the observed value if the two means were the same (provided that the smaller mean is subtracted from the larger, so that t ≥ 0). It can be easily calculated from the cumulative distribution function F ν (t) of the t distribution:

  9. Noncentral F-distribution - Wikipedia

    en.wikipedia.org/wiki/Noncentral_F-distribution

    In probability theory and statistics, the noncentral F-distribution is a continuous probability distribution that is a noncentral generalization of the (ordinary) F-distribution. It describes the distribution of the quotient ( X / n 1 )/( Y / n 2 ), where the numerator X has a noncentral chi-squared distribution with n 1 degrees of freedom and ...