Search results
Results From The WOW.Com Content Network
Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.
An example of such an exchange would be an isentropic expansion or compression that entails work done on or by the flow. For an isentropic flow, entropy density can vary between different streamlines. If the entropy density is the same everywhere, then the flow is said to be homentropic.
Boundary-work is part of science studies. In boundary-work, boundaries, demarcations, or other divisions between fields of knowledge are created, advocated, attacked, or reinforced. Such delineations often have high stakes for the participants, [1] and carry the implication that such boundaries are flexible and socially constructed. [citation ...
This article uses the physics sign convention for work, where positive work is work done by the system. Using this convention, by the first law of thermodynamics, The yellow area represents the work done = + where W is work, U is internal energy, and Q is heat. [1] Pressure-volume work by the closed system is defined as:
An isothermal process is a type of thermodynamic process in which the temperature T of a system remains constant: ΔT = 0. This typically occurs when a system is in contact with an outside thermal reservoir, and a change in the system occurs slowly enough to allow the system to be continuously adjusted to the temperature of the reservoir through heat exchange (see quasi-equilibrium).
According to the Bekenstein bound, the entropy of a black hole is proportional to the number of Planck areas that it would take to cover the black hole's event horizon.. In physics, the Bekenstein bound (named after Jacob Bekenstein) is an upper limit on the thermodynamic entropy S, or Shannon entropy H, that can be contained within a given finite region of space which has a finite amount of ...
Replacing work with a change in volume gives = Since the process is isochoric, dV = 0 , the previous equation now gives d U = d Q {\displaystyle dU=dQ} Using the definition of specific heat capacity at constant volume, c v = ( dQ / dT )/ m , where m is the mass of the gas, we get d Q = m c v d T {\displaystyle dQ=mc_{\mathrm {v} }\,dT}
The reason why Poiseuille's law leads to a different formula for the resistance R is the difference between the fluid flow and the electric current. Electron gas is inviscid, so its velocity does not depend on the distance to the walls of the conductor. The resistance is due to the interaction between the flowing electrons and the atoms of the ...