Search results
Results From The WOW.Com Content Network
Ohm's law states that the electric current through a conductor between two points is directly proportional to the voltage across the two points. Introducing the constant of proportionality, the resistance, [1] one arrives at the three mathematical equations used to describe this relationship: [2]
Also called chordal or DC resistance This corresponds to the usual definition of resistance; the voltage divided by the current R s t a t i c = V I. {\displaystyle R_{\mathrm {static} }={V \over I}.} It is the slope of the line (chord) from the origin through the point on the curve. Static resistance determines the power dissipation in an electrical component. Points on the current–voltage ...
The resistance of a given element is proportional to the length, but inversely proportional to the cross-sectional area. For example, if A = 1 m 2 , ℓ {\displaystyle \ell } = 1 m (forming a cube with perfectly conductive contacts on opposite faces), then the resistance of this element in ohms is numerically equal to the resistivity of the ...
Portal:Electronics/Selected article/1 . Ohm's law states that, in an electrical circuit, the current passing through a conductor, from one terminal point to another, is directly proportional to the potential difference (i.e. voltage drop or voltage) across the two terminal points and inversely proportional to the resistance of the conductor between the two terminal points.
Ohm's law states that the voltage across a resistor is proportional to the current passing through it, where the constant of proportionality is the resistance (). For example, if a 300- ohm resistor is attached across the terminals of a 12-volt battery, then a current of 12 / 300 = 0.04 amperes flows through that resistor.
The resistance is a consequence of the motion of charge through a conductor: in metals, for example, resistance is primarily due to collisions between electrons and ions. Ohm's law is a basic law of circuit theory, stating that the current passing through a resistance is directly proportional to the potential difference across it. The ...
By varying the current and the length of the wire he deduced that the heat produced was proportional to the square of the current multiplied by the electrical resistance of the immersed wire. [ 5 ] In 1841 and 1842, subsequent experiments showed that the amount of heat generated was proportional to the chemical energy used in the voltaic pile ...
Resistance R is proportional to the distance l between the electrodes and is inversely proportional to the cross-sectional area of the sample A (noted S on the figure above). Writing ρ (rho) for the specific resistance, or resistivity, =.