When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Poisson point process - Wikipedia

    en.wikipedia.org/wiki/Poisson_point_process

    A visual depiction of a Poisson point process starting. In probability theory, statistics and related fields, a Poisson point process (also known as: Poisson random measure, Poisson random point field and Poisson point field) is a type of mathematical object that consists of points randomly located on a mathematical space with the essential feature that the points occur independently of one ...

  3. Poisson distribution - Wikipedia

    en.wikipedia.org/wiki/Poisson_distribution

    In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]

  4. Mixed Poisson process - Wikipedia

    en.wikipedia.org/wiki/Mixed_Poisson_process

    Mixed Poisson processes are doubly stochastic in the sense that in a first step, the value of the random variable is determined. This value then determines the "second order stochasticity" by increasing or decreasing the original intensity measure μ {\displaystyle \mu } .

  5. Renewal theory - Wikipedia

    en.wikipedia.org/wiki/Renewal_theory

    The renewal process is a generalization of the Poisson process. In essence, the Poisson process is a continuous-time Markov process on the positive integers (usually starting at zero) which has independent exponentially distributed holding times at each integer i {\displaystyle i} before advancing to the next integer, i + 1 {\displaystyle i+1} .

  6. Compound Poisson distribution - Wikipedia

    en.wikipedia.org/wiki/Compound_Poisson_distribution

    The shift geometric distribution is discrete compound Poisson distribution since it is a trivial case of negative binomial distribution. This distribution can model batch arrivals (such as in a bulk queue [5] [9]). The discrete compound Poisson distribution is also widely used in actuarial science for modelling the distribution of the total ...

  7. Burke's theorem - Wikipedia

    en.wikipedia.org/wiki/Burke's_theorem

    In queueing theory, a discipline within the mathematical theory of probability, Burke's theorem (sometimes the Burke's output theorem [1]) is a theorem (stated and demonstrated by Paul J. Burke while working at Bell Telephone Laboratories) asserting that, for the M/M/1 queue, M/M/c queue or M/M/∞ queue in the steady state with arrivals is a Poisson process with rate parameter λ:

  8. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    The Poisson distribution, which describes a very large number of individually unlikely events that happen in a certain time interval. Related to this distribution are a number of other distributions: the displaced Poisson, the hyper-Poisson, the general Poisson binomial and the Poisson type distributions.

  9. M/M/∞ queue - Wikipedia

    en.wikipedia.org/wiki/M/M/%E2%88%9E_queue

    An M/M/∞ queue is a stochastic process whose state space is the set {0,1,2,3,...} where the value corresponds to the number of customers currently being served. Since, the number of servers in parallel is infinite, there is no queue and the number of customers in the systems coincides with the number of customers being served at any moment.