Search results
Results From The WOW.Com Content Network
Descartes' theorem still applies when one of the circles is replaced by a straight line of zero curvature. If one of the three circles is replaced by a straight line tangent to the remaining circles, then its curvature is zero and drops out of equation (1). For instance, if =, then equation (1) can be factorized as [31]
For three circles denoted by C 1, C 2, and C 3, there are three pairs of circles (C 1 C 2, C 2 C 3, and C 1 C 3). Since each pair of circles has two homothetic centers, there are six homothetic centers altogether. Gaspard Monge showed in the early 19th century that these six points lie on four lines, each line having three collinear points.
These two circles determine a pencil, meaning a line L in the P 3 of circles. If the equations of C 0 and C ∞ are f and g, respectively, then the points on L correspond to the circles whose equations are Sf + Tg, where [S : T] is a point of P 1. The points where L meets Z D are precisely the circles in the pencil that are tangent to D.
C = 2πR. A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. The distance between any point of the circle and the centre is called the radius. The length of a line segment connecting two points on the circle and passing through the centre is called the diameter.
Intersection problems between a line and a conic section (circle, ellipse, parabola, etc.) or a quadric (sphere, cylinder, hyperboloid, etc.) lead to quadratic equations that can be easily solved. Intersections between quadrics lead to quartic equations that can be solved algebraically.
Mohr's circles for a three-dimensional state of stress. Mohr's circle is a two-dimensional graphical representation of the transformation law for the Cauchy stress tensor. Mohr's circle is often used in calculations relating to mechanical engineering for materials' strength, geotechnical engineering for strength of soils, and structural ...
Geometry. In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an idealized ruler and a pair of compasses. The idealized ruler, known as a straightedge, is assumed ...
Monge's theorem states that the three such points given by the three pairs of circles always lie in a straight line. In the case of two of the circles being of equal size, the two external tangent lines are parallel. In this case Monge's theorem asserts that the other two intersection points must lie on a line parallel to those two external ...