When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Computational complexity of matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the fastest algorithm for matrix multiplication is of major practical ...

  3. Matrix regularization - Wikipedia

    en.wikipedia.org/wiki/Matrix_regularization

    For example, the , norm is used in multi-task learning to group features across tasks, such that all the elements in a given row of the coefficient matrix can be forced to zero as a group. [6] The grouping effect is achieved by taking the ℓ 2 {\displaystyle \ell ^{2}} -norm of each row, and then taking the total penalty to be the sum of these ...

  4. MATLAB - Wikipedia

    en.wikipedia.org/wiki/MATLAB

    MATLAB (an abbreviation of "MATrix LABoratory" [18]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks. MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms , creation of user interfaces , and interfacing with programs written in other languages.

  5. Non-negative matrix factorization - Wikipedia

    en.wikipedia.org/wiki/Non-negative_matrix...

    For example, if V is an m × n matrix, W is an m × p matrix, and H is a p × n matrix then p can be significantly less than both m and n. Here is an example based on a text-mining application: Let the input matrix (the matrix to be factored) be V with 10000 rows and 500 columns where words are in rows and documents are in columns. That is, we ...

  6. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Hadamard product of two matrices of the same size, resulting in a matrix of the same size, which is the product entry-by-entry; Kronecker product or tensor product, the generalization to any size of the preceding; Khatri-Rao product and Face-splitting product

  7. Matrix multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication...

    The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:

  8. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    B i consists of n block matrices of size m × m, stacked column-wise, and all these matrices are all-zero except for the i-th one, which is a m × m identity matrix I m. Then the vectorized version of X can be expressed as follows: vec ⁡ ( X ) = ∑ i = 1 n B i X e i {\displaystyle \operatorname {vec} (\mathbf {X} )=\sum _{i=1}^{n}\mathbf {B ...

  9. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    Thus A T x = 0 if and only if x is orthogonal (perpendicular) to each of the column vectors of A. It follows that the left null space (the null space of A T) is the orthogonal complement to the column space of A. For a matrix A, the column space, row space, null space, and left null space are sometimes referred to as the four fundamental subspaces.