When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Square root of 2 - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_2

    Technically, it should be called the principal square root of 2, to distinguish it from the negative number with the same property. Geometrically, the square root of 2 is the length of a diagonal across a square with sides of one unit of length; this follows from the Pythagorean theorem. It was probably the first number known to be irrational. [1]

  3. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    The square root of 2 was likely the first number proved irrational. [27] The golden ratio is another famous quadratic irrational number. The square roots of all natural numbers that are not perfect squares are irrational and a proof may be found in quadratic irrationals.

  4. Algebraic expression - Wikipedia

    en.wikipedia.org/wiki/Algebraic_expression

    Since taking the square root is the same as raising to the power ⁠ 1 / 2 ⁠, the following is also an algebraic expression: 1 − x 2 1 + x 2 {\displaystyle {\sqrt {\frac {1-x^{2}}{1+x^{2}}}}} An algebraic equation is an equation involving polynomials , for which algebraic expressions may be solutions .

  5. Algebraic number - Wikipedia

    en.wikipedia.org/wiki/Algebraic_number

    Quadratic irrational numbers, irrational solutions of a quadratic polynomial ax 2 + bx + c with integer coefficients a, b, and c, are algebraic numbers. If the quadratic polynomial is monic (a = 1), the roots are further qualified as quadratic integers. Gaussian integers, complex numbers a + bi for which both a and b are integers, are also ...

  6. Quadratic irrational number - Wikipedia

    en.wikipedia.org/wiki/Quadratic_irrational_number

    The square root of 2 was the first such number to be proved irrational. Theodorus of Cyrene proved the irrationality of the square roots of non-square natural numbers up to 17, but stopped there, probably because the algebra he used could not be applied to the square root of numbers greater than 17. Euclid's Elements Book 10 is dedicated to ...

  7. Arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arithmetic

    Irrational numbers are numbers that cannot be expressed through fractions or repeated decimals, like the root of 2 and π. [104] Unlike rational number arithmetic, real number arithmetic is closed under exponentiation as long as it uses a positive number as its base.

  8. Elementary algebra - Wikipedia

    en.wikipedia.org/wiki/Elementary_algebra

    3.2 Simplifying expressions. ... Many quantitative relationships in science and mathematics are expressed as algebraic equations. ... −1 is a root of multiplicity 2 ...

  9. Transcendental number - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number

    For example, the square root of 2 is an irrational number, but it is not a transcendental number as it is a root of the polynomial equation x 22 = 0. The golden ratio (denoted φ {\displaystyle \varphi } or ϕ {\displaystyle \phi } ) is another irrational number that is not transcendental, as it is a root of the polynomial equation x 2 − ...