Search results
Results From The WOW.Com Content Network
That is (unlike road distance with one-way streets) the distance between two points does not depend on which of the two points is the start and which is the destination. [11] It is positive, meaning that the distance between every two distinct points is a positive number, while the distance from any point to itself is zero. [11]
The two dimensional Manhattan distance has "circles" i.e. level sets in the form of squares, with sides of length √ 2 r, oriented at an angle of π/4 (45°) to the coordinate axes, so the planar Chebyshev distance can be viewed as equivalent by rotation and scaling to (i.e. a linear transformation of) the planar Manhattan distance.
In information theory, the Hamming distance between two strings or vectors of equal length is the number of positions at which the corresponding symbols are different. In other words, it measures the minimum number of substitutions required to change one string into the other, or equivalently, the minimum number of errors that could have transformed one string into the other.
The Minkowski distance can also be viewed as a multiple of the power mean of the component-wise differences between and . The following figure shows unit circles (the level set of the distance function where all points are at the unit distance from the center) with various values of p {\displaystyle p} :
The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.
The Canberra distance is a numerical measure of the distance between pairs of points in a vector space, introduced in 1966 [1] and refined in 1967 [2] by Godfrey N. Lance and William T. Williams. It is a weighted version of L ₁ (Manhattan) distance . [ 3 ]
In mathematics, a Euclidean distance matrix is an n×n matrix representing the spacing of a set of n points in Euclidean space. For points ,, …, in k-dimensional space ℝ k, the elements of their Euclidean distance matrix A are given by squares of distances between them. That is
The length of the curve is given by the formula = | ′ | where | ′ | is the Euclidean norm of the tangent vector ′ to the curve. To justify this formula, define the arc length as limit of the sum of linear segment lengths for a regular partition of [ a , b ] {\displaystyle [a,b]} as the number of segments approaches infinity.