Ad
related to: statistical vs systematic uncertainty calculator
Search results
Results From The WOW.Com Content Network
In metrology, measurement uncertainty is the expression of the statistical dispersion of the values attributed to a quantity measured on an interval or ratio scale.. All measurements are subject to uncertainty and a measurement result is complete only when it is accompanied by a statement of the associated uncertainty, such as the standard deviation.
Uncertainty quantification (UQ) is the science of quantitative characterization and estimation of uncertainties in both computational and real world applications. It tries to determine how likely certain outcomes are if some aspects of the system are not exactly known.
The Performance Test Standard PTC 19.1-2005 "Test Uncertainty", published by the American Society of Mechanical Engineers (ASME), discusses systematic and random errors in considerable detail. In fact, it conceptualizes its basic uncertainty categories in these terms.
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
While precision is a description of random errors (a measure of statistical variability), accuracy has two different definitions: More commonly, a description of systematic errors (a measure of statistical bias of a given measure of central tendency, such as the mean). In this definition of "accuracy", the concept is independent of "precision ...
Experimental uncertainty analysis is a technique that analyses a derived quantity, based on the uncertainties in the experimentally measured quantities that are used in some form of mathematical relationship ("model") to calculate that derived quantity.
While uncertainty analysis aims to describe the distribution of the output (providing its statistics, moments, pdf, cdf,...), sensitivity analysis aims to measure and quantify the impact of each input or a group of inputs on the variability of the output (by calculating the corresponding sensitivity indices). Figure 1 provides a schematic ...
The statistical errors, on the other hand, are independent, and their sum within the random sample is almost surely not zero. One can standardize statistical errors (especially of a normal distribution) in a z-score (or "standard score"), and standardize residuals in a t-statistic, or more generally studentized residuals.