Search results
Results From The WOW.Com Content Network
The elements on the diagonal of a skew-symmetric matrix are zero, and therefore its trace equals zero. If is a real skew-symmetric matrix and is a real eigenvalue, then =, i.e. the nonzero eigenvalues of a skew-symmetric matrix are non-real. If is a real skew-symmetric matrix, then + is invertible, where is the identity matrix.
The matrix and the vector can be represented with respect to a right-handed or left-handed coordinate system. Throughout the article, we assumed a right-handed orientation, unless otherwise specified. Vectors or forms The vector space has a dual space of linear forms, and the matrix can act on either vectors or forms.
into two skew-symmetric matrices A 1 and A 2 satisfying the properties A 1 A 2 = 0, A 1 3 = −A 1 and A 2 3 = −A 2, where ∓θ 1 i and ∓θ 2 i are the eigenvalues of A. Then, the 4D rotation matrices can be obtained from the skew-symmetric matrices A 1 and A 2 by Rodrigues' rotation formula and the Cayley formula. [9] Let A be a 4 × 4 ...
Any square matrix can uniquely be written as sum of a symmetric and a skew-symmetric matrix. This decomposition is known as the Toeplitz decomposition. Let Mat n {\displaystyle {\mbox{Mat}}_{n}} denote the space of n × n {\displaystyle n\times n} matrices.
In the theory of three-dimensional rotation, Rodrigues' rotation formula, named after Olinde Rodrigues, is an efficient algorithm for rotating a vector in space, given an axis and angle of rotation. By extension, this can be used to transform all three basis vectors to compute a rotation matrix in SO(3) , the group of all rotation matrices ...
An infinitesimal rotation matrix or differential rotation matrix is a matrix representing an infinitely small rotation.. While a rotation matrix is an orthogonal matrix = representing an element of () (the special orthogonal group), the differential of a rotation is a skew-symmetric matrix = in the tangent space (the special orthogonal Lie algebra), which is not itself a rotation matrix.
Anti-Hermitian matrix: Synonym for skew-Hermitian matrix. Anti-symmetric matrix: Synonym for skew-symmetric matrix. Arrowhead matrix: A square matrix containing zeros in all entries except for the first row, first column, and main diagonal. Band matrix: A square matrix whose non-zero entries are confined to a diagonal band. Bidiagonal matrix
If the underlying field has characteristic not 2, alternation is equivalent to skew-symmetry. If the characteristic is 2, the skew-symmetry is implied by, but does not imply alternation. In this case every symplectic form is a symmetric form, but not vice versa. Working in a fixed basis, can be represented by a matrix.