Search results
Results From The WOW.Com Content Network
In quantum mechanics, the probability current (sometimes called probability flux) is a mathematical quantity describing the flow of probability. Specifically, if one thinks of probability as a heterogeneous fluid, then the probability current is the rate of flow of this fluid.
In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. [1] The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional area at a given point in space, its direction being that of the motion of the positive charges at this point.
The probability density is = | |, this equation is exactly the continuity equation, appearing in many situations in physics where we need to describe the local conservation of quantities. The best example is in classical electrodynamics, where j corresponds to current density corresponding to electric charge, and the density is the charge-density.
General probability distribution V j = volume (3d region) particle may occupy, P = Probability that particle 1 has position r 1 in volume V 1 with spin s z 1 and particle 2 has position r 2 in volume V 2 with spin s z 2 , etc.
The fact that the density is positive definite and convected according to this continuity equation implies that one may integrate the density over a certain domain and set the total to 1, and this condition will be maintained by the conservation law. A proper relativistic theory with a probability density current must also share this feature.
In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...
The Born rule is a postulate of quantum mechanics that gives the probability that a measurement of a quantum system will yield a given result. In one commonly used application, it states that the probability density for finding a particle at a given position is proportional to the square of the amplitude of the system's wavefunction at that position.
The charge density appears in the continuity equation for electric current, and also in Maxwell's Equations. It is the principal source term of the electromagnetic field; when the charge distribution moves, this corresponds to a current density. The charge density of molecules impacts chemical and separation processes.