Search results
Results From The WOW.Com Content Network
In mathematical physics, scattering theory is a framework for studying and understanding the interaction or scattering of solutions to partial differential equations. In acoustics , the differential equation is the wave equation , and scattering studies how its solutions, the sound waves , scatter from solid objects or propagate through non ...
Rayleigh scattering causes the blue color of the daytime sky and the reddening of the Sun at sunset. Rayleigh scattering (/ ˈ r eɪ l i / RAY-lee) is the scattering or deflection of light, or other electromagnetic radiation, by particles with a size much smaller than the wavelength of the radiation.
Scattering theory is the theory of scattering events which can occur as well in quantum mechanics, classical electrodynamics or acoustics. The associated general mathematical frame bears the same name though its range of application may be larger.
Solutions to the equation of radiative transfer form an enormous body of work. The differences however, are essentially due to the various forms for the emission and absorption coefficients. If scattering is ignored, then a general steady state solution in terms of the emission and absorption coefficients may be written:
To relate the scattering length to physical observables that can be measured in a scattering experiment we need to compute the cross section. In scattering theory one writes the asymptotic wavefunction as (we assume there is a finite ranged scatterer at the origin and there is an incoming plane wave along the z {\displaystyle z} -axis):
Scattering from any spherical particles with arbitrary size parameter is explained by the Mie theory. Mie theory, also called Lorenz-Mie theory or Lorenz-Mie-Debye theory, is a complete analytical solution of Maxwell's equations for the scattering of electromagnetic radiation by spherical particles (Bohren and Huffman, 1998).
In quantum physics, the scattering amplitude is the probability amplitude of the outgoing spherical wave relative to the incoming plane wave in a stationary-state scattering process. [1] At large distances from the centrally symmetric scattering center, the plane wave is described by the wavefunction [ 2 ]
Single scattering: when an electron is scattered just once. Plural scattering: when electron(s) scatter several times. Multiple scattering: when electron(s) scatter many times over. The likelihood of an electron scattering and the degree of the scattering is a probability function of the specimen thickness and the mean free path. [6]