Search results
Results From The WOW.Com Content Network
Fullerenes had been predicted for some time, but only after their accidental synthesis in 1985 were they detected in nature [3] [4] and outer space. [5] [6] The discovery of fullerenes greatly expanded the number of known allotropes of carbon, which had previously been limited to graphite, diamond, and amorphous carbon such as soot and charcoal.
Fullerenes are sparingly soluble in aromatic solvents and carbon disulfide, but insoluble in water. Solutions of pure C 60 have a deep purple color which leaves a brown residue upon evaporation. The reason for this color change is the relatively narrow energy width of the band of molecular levels responsible for green light absorption by ...
Unlike diamond, graphite is an electrical conductor. Thus, it can be used in, for instance, electrical arc lamp electrodes. Likewise, under standard conditions, graphite is the most stable form of carbon. Therefore, it is used in thermochemistry as the standard state for defining the heat of formation of carbon compounds.
The presence of fullerenes has resulted in shungite being of interest to researchers as a natural reservoir, though shungite is not uniquely enriched in fullerenes compared to other carbon-rich rocks. [14] Shungite has been used as a folk medical treatment since the early 18th century.
In April 2003, fullerenes were under study for potential medicinal use: binding specific antibiotics to the structure of resistant bacteria and even target certain types of cancer cells such as melanoma. The October 2005 issue of Chemistry and Biology contains an article describing the use of fullerenes as light-activated antimicrobial agents.
For example, the functionalized fullerenes have been used for drug therapy of the HIV and other viruses: their hydrophobic ball-like molecules “block” a virus active site. This site can also be a target for other xenobiotics, which are geometrically similar to those of the functionalized fullerenes and are complementary to the HIV protease ...
Besides unfilled fullerenes, endohedral metallofullerenes develop with different cage sizes like La@C 60 or La@C 82 and as different isomer cages. Aside from the dominant presence of mono-metal cages, numerous di-metal endohedral complexes and the tri-metal carbide fullerenes like Sc 3 C 2 @C 80 were also isolated. In 1999 a discovery drew ...
Fullerene chemistry is a field of organic chemistry devoted to the chemical properties of fullerenes. [1] [2] [3] Research in this field is driven by the need to functionalize fullerenes and tune their properties. For example, fullerene is notoriously insoluble and adding a suitable group can enhance solubility. [1]