Search results
Results From The WOW.Com Content Network
Braking distance refers to the distance a vehicle will travel from the point when its brakes are fully applied to when it comes to a complete stop. It is primarily affected by the original speed of the vehicle and the coefficient of friction between the tires and the road surface, [Note 1] and negligibly by the tires' rolling resistance and vehicle's air drag.
d MT = braking distance, m (ft) V = design speed, km/h (mph) a = deceleration rate, m/s 2 (ft/s 2) Actual braking distances are affected by the vehicle type and condition, the incline of the road, the available traction, and numerous other factors. A deceleration rate of 3.4 m/s 2 (11.2 ft/s 2) is used to determine stopping sight distance. [6]
A simple graph of car stopping distances: Date: 14 November 2008: ... HYanWong . This W3C-unspecified chart was created with R. using the following commands svg("R ...
For heavy duty commercial vehicles it is recommended 4-6 seconds following distance for speeds under 30 mi/h (48 km/h), and 6-8 seconds following distance for speeds over 30 mi/h (48 km/h). [9] Rear-end collisions are the number one type of traffic collisions .
The braking distance will be approximately 250 m (820 ft) at 100 km/h (62 mph) and 600 m (2,000 ft) at 160 km/h (99 mph). High-speed trains are usually equipped with a magnetic track brake, which can give about 0.3 m/s 2 extra, and give braking distances of about 850 m (2,790 ft) at 200 km/h (120 mph) and 1,900 m (6,200 ft) at 300 km/h (190 mph).
The brake balance or brake bias of a vehicle is the distribution of brake force at the front and rear tires, and may be given as the percentage distributed to the front brakes (e.g. 52%) [1] or as the ratio of front and rear percentages (e.g. 52/48). [2]
Since kinetic energy increases quadratically with velocity (= /), an object moving at 10 m/s has 100 times as much energy as one of the same mass moving at 1 m/s, and consequently the theoretical braking distance, when braking at the traction limit, is up to 100 times as long. In practice, fast vehicles usually have significant air drag, and ...
The rule is not a guide to safe stopping distance, it is more a guide to reaction times. The two-second rule tells a defensive driver the minimum distance needed to reduce the risk of collision under ideal driving conditions. The allotted two-seconds is a safety buffer, to allow the following driver time to respond.