Search results
Results From The WOW.Com Content Network
The definition of the negative binomial distribution can be extended to the case where the parameter r can take on a positive real value. Although it is impossible to visualize a non-integer number of "failures", we can still formally define the distribution through its probability mass function.
The multinomial distribution, a generalization of the binomial distribution. The multivariate normal distribution, a generalization of the normal distribution. The multivariate t-distribution, a generalization of the Student's t-distribution. The negative multinomial distribution, a generalization of the negative binomial distribution.
Binomial distribution, for the number of "positive occurrences" (e.g. successes, yes votes, etc.) given a fixed total number of independent occurrences; Negative binomial distribution, for binomial-type observations but where the quantity of interest is the number of failures before a given number of successes occurs
The binomial distribution is the PMF of k successes given n independent events each with a probability p of success. Mathematically, when α = k + 1 and β = n − k + 1, the beta distribution and the binomial distribution are related by [clarification needed] a factor of n + 1:
Some distributions have been specially named as compounds: beta-binomial distribution, Beta negative binomial distribution, gamma-normal distribution. Examples: If X is a Binomial(n,p) random variable, and parameter p is a random variable with beta(α, β) distribution, then X is distributed as a Beta-Binomial(α,β,n).
The beta negative binomial distribution contains the beta geometric distribution as a special case when either = or =. It can therefore approximate the geometric distribution arbitrarily well. It also approximates the negative binomial distribution arbitrary well for large α {\displaystyle \alpha } .
The negative binomial distributions, (number of failures before r successes with probability p of success on each trial). The special case r = 1 is a geometric distribution. Every cumulant is just r times the corresponding cumulant of the corresponding geometric distribution.
Different texts (and even different parts of this article) adopt slightly different definitions for the negative binomial distribution. They can be distinguished by whether the support starts at k = 0 or at k = r, whether p denotes the probability of a success or of a failure, and whether r represents success or failure, [1] so identifying the specific parametrization used is crucial in any ...