Ads
related to: pythagorean theorem word problems worksheet pdfstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.
IM 67118, also known as Db 2-146, is an Old Babylonian clay tablet in the collection of the Iraq Museum that contains the solution to a problem in plane geometry concerning a rectangle with given area and diagonal. In the last part of the text, the solution is proved correct using the Pythagorean theorem. The steps of the solution are believed ...
The Berlin Papyrus contains two problems, the first stated as "the area of a square of 100 is equal to that of two smaller squares. The side of one is ½ + ¼ the side of the other." [ 7 ] The interest in the question may suggest some knowledge of the Pythagorean theorem , though the papyrus only shows a straightforward solution to a single ...
Plimpton 322 is a Babylonian clay tablet, believed to have been written around 1800 BC, that contains a mathematical table written in cuneiform script.Each row of the table relates to a Pythagorean triple, that is, a triple of integers (,,) that satisfies the Pythagorean theorem, + =, the rule that equates the sum of the squares of the legs of a right triangle to the square of the hypotenuse.
The spiral is started with an isosceles right triangle, with each leg having unit length.Another right triangle (which is the only automedian right triangle) is formed, with one leg being the hypotenuse of the prior right triangle (with length the square root of 2) and the other leg having length of 1; the length of the hypotenuse of this second right triangle is the square root of 3.
Triangles based on Pythagorean triples are Heronian, meaning they have integer area as well as integer sides. The possible use of the 3 : 4 : 5 triangle in Ancient Egypt, with the supposed use of a knotted rope to lay out such a triangle, and the question whether Pythagoras' theorem was known at that time, have been much debated. [3]