Search results
Results From The WOW.Com Content Network
In medicine, hydrostatic pressure in blood vessels is the pressure of the blood against the wall. It is the opposing force to oncotic pressure . In capillaries, hydrostatic pressure (also known as capillary blood pressure) is higher than the opposing “colloid osmotic pressure” in blood—a “constant” pressure primarily produced by ...
The Starling principle holds that fluid movement across a semi-permeable blood vessel such as a capillary or small venule is determined by the hydrostatic pressures and colloid osmotic pressures (oncotic pressure) on either side of a semipermeable barrier that sieves the filtrate, retarding larger molecules such as proteins from leaving the blood stream.
Pressure in water and air. Pascal's law applies for fluids. Pascal's principle is defined as: A change in pressure at any point in an enclosed incompressible fluid at rest is transmitted equally and undiminished to all points in all directions throughout the fluid, and the force due to the pressure acts at right angles to the enclosing walls.
The upward force on the cube is the pressure on the bottom surface integrated over its area. The surface is at constant depth, so the pressure is constant. Therefore, the integral of the pressure over the area of the horizontal bottom surface of the cube is the hydrostatic pressure at that depth multiplied by the area of the bottom surface.
The hydrostatic equilibrium pertains to hydrostatics and the principles of equilibrium of fluids. A hydrostatic balance is a particular balance for weighing substances in water. Hydrostatic balance allows the discovery of their specific gravities. This equilibrium is strictly applicable when an ideal fluid is in steady horizontal laminar flow ...
A set of communicating vessels Animation showing the filling of communicating vessels. Communicating vessels or communicating vases [1] are a set of containers containing a homogeneous fluid and connected sufficiently far below the top of the liquid: when the liquid settles, it balances out to the same level in all of the containers regardless of the shape and volume of the containers.
For a fluid at rest, ∇ ⋅ τ must be zero (so that hydrostatic pressure results). The above list states the classic argument [5] that the shear strain rate tensor (the (symmetric) shear part of the velocity gradient) is a pure shear tensor and does not include any inflow/outflow part (any compression/expansion part).
Such conditions conform with principles of fluid statics. The pressure at any given point of a non-moving (static) fluid is called the hydrostatic pressure. Closed bodies of fluid are either "static", when the fluid is not moving, or "dynamic", when the fluid can move as in either a pipe or by compressing an air gap in a closed container.