When.com Web Search

  1. Ads

    related to: table of primitive polynomials practice quiz quizlet geometry pdf free

Search results

  1. Results From The WOW.Com Content Network
  2. Primitive polynomial (field theory) - Wikipedia

    en.wikipedia.org/wiki/Primitive_polynomial...

    In finite field theory, a branch of mathematics, a primitive polynomial is the minimal polynomial of a primitive element of the finite field GF(p m).This means that a polynomial F(X) of degree m with coefficients in GF(p) = Z/pZ is a primitive polynomial if it is monic and has a root α in GF(p m) such that {,,,,, …} is the entire field GF(p m).

  3. Quadric - Wikipedia

    en.wikipedia.org/wiki/Quadric

    In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas).It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections.

  4. Hilbert's axioms - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_axioms

    To a system of points, straight lines, and planes, it is impossible to add other elements in such a manner that the system thus generalized shall form a new geometry obeying all of the five groups of axioms. In other words, the elements of geometry form a system which is not susceptible of extension, if we regard the five groups of axioms as valid.

  5. Primitive polynomial - Wikipedia

    en.wikipedia.org/wiki/Primitive_polynomial

    In different branches of mathematics, primitive polynomial may refer to: Primitive polynomial (field theory), a minimal polynomial of an extension of finite fields; Primitive polynomial (ring theory), a polynomial with coprime coefficients

  6. Problems and Theorems in Analysis - Wikipedia

    en.wikipedia.org/wiki/Problems_and_Theorems_in...

    Zeros. Polynomials. Determinants. Number Theory. Geometry. The volumes are highly regarded for the quality of their problems and their method of organisation, not by topic but by method of solution, with a focus on cultivating the student's problem-solving skills. Each volume the contains problems at the beginning and (brief) solutions at the end.

  7. Primitive element theorem - Wikipedia

    en.wikipedia.org/wiki/Primitive_element_theorem

    In field theory, the primitive element theorem states that every finite separable field extension is simple, i.e. generated by a single element. This theorem implies in particular that all algebraic number fields over the rational numbers, and all extensions in which both fields are finite, are simple.

  8. Simple extension - Wikipedia

    en.wikipedia.org/wiki/Simple_extension

    Otherwise, θ is algebraic over K; that is, θ is a root of a polynomial over K. The monic polynomial of minimal degree n, with θ as a root, is called the minimal polynomial of θ. Its degree equals the degree of the field extension, that is, the dimension of L viewed as a K-vector space.

  9. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    For polynomials with real or complex coefficients, it is not possible to express a lower bound of the root separation in terms of the degree and the absolute values of the coefficients only, because a small change on a single coefficient transforms a polynomial with multiple roots into a square-free polynomial with a small root separation, and ...