Search results
Results From The WOW.Com Content Network
For example, a two-dimensional array A with three rows and four columns might provide access to the element at the 2nd row and 4th column by the expression A[1][3] in the case of a zero-based indexing system. Thus two indices are used for a two-dimensional array, three for a three-dimensional array, and n for an n-dimensional array.
For example, a 2,1 represents the element at the second row and first column of the matrix. In mathematics, a matrix (pl.: matrices) is a rectangular array or table of numbers, symbols, or expressions, with elements or entries arranged in rows and columns, which is used to represent a mathematical object or property of such an object.
In the Pascal program, those elements are denoted A[1,1], A[1,2], A[2,1], …, A[4,2]. [3] Special array types are often defined by the language's standard libraries . Dynamic lists are also more common and easier to implement [ dubious – discuss ] than dynamic arrays .
More generally, there are d! possible orders for a given array, one for each permutation of dimensions (with row-major and column-order just 2 special cases), although the lists of stride values are not necessarily permutations of each other, e.g., in the 2-by-3 example above, the strides are (3,1) for row-major and (1,2) for column-major.
For example, to perform an element by element sum of two arrays, a and b to produce a third c, it is only necessary to write c = a + b In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x)
The volume of this parallelepiped is the absolute value of the determinant of the 3-by-3 matrix formed by the vectors r 1, r 2, and r 3. The determinant det (A) of a square matrix A is a scalar that tells whether the associated map is an isomorphism or not: to be so it is sufficient and necessary that the determinant is nonzero. [47]
This has the convenient implication for 2 × 2 and 3 × 3 rotation matrices that the trace reveals the angle of rotation, θ, in the two-dimensional space (or subspace). For a 2 × 2 matrix the trace is 2 cos θ, and for a 3 × 3 matrix it is 1 + 2 cos θ. In the three-dimensional case, the subspace consists of all vectors perpendicular to the ...
The exchange of two rows multiplies the determinant by −1. Multiplying a row by a number multiplies the determinant by this number. Adding a multiple of one row to another row does not change the determinant. The above properties relating to rows (properties 2–4) may be replaced by the corresponding statements with respect to columns.