Search results
Results From The WOW.Com Content Network
The security of RSA relies on the practical difficulty of factoring the product of two large prime numbers, the "factoring problem". Breaking RSA encryption is known as the RSA problem. Whether it is as difficult as the factoring problem is an open question. [3] There are no published methods to defeat the system if a large enough key is used ...
More specifically, the RSA problem is to efficiently compute P given an RSA public key (N, e) and a ciphertext C ≡ P e (mod N). The structure of the RSA public key requires that N be a large semiprime (i.e., a product of two large prime numbers), that 2 < e < N, that e be coprime to φ(N), and that 0 ≤ C < N.
A deterministic encryption scheme (as opposed to a probabilistic encryption scheme) is a cryptosystem which always produces the same ciphertext for a given plaintext and key, even over separate executions of the encryption algorithm. Examples of deterministic encryption algorithms include RSA cryptosystem (without encryption padding), and many ...
RSA (Rivest–Shamir–Adleman) is a public-key cryptosystem, one of the oldest widely used for secure data transmission. The initialism "RSA" comes from the surnames of Ron Rivest , Adi Shamir and Leonard Adleman , who publicly described the algorithm in 1977.
In cryptography, PKCS #1 is the first of a family of standards called Public-Key Cryptography Standards (PKCS), published by RSA Laboratories. It provides the basic definitions of and recommendations for implementing the RSA algorithm for public-key cryptography .
RSA Laboratories stated: "Now that the industry has a considerably more advanced understanding of the cryptanalytic strength of common symmetric-key and public-key algorithms, these challenges are no longer active." [6] When the challenge ended in 2007, only RSA-576 and RSA-640 had been factored from the 2001 challenge numbers. [7]
In the RSA cryptosystem, Bob might tend to use a small value of d, rather than a large random number to improve the RSA decryption performance. However, Wiener's attack shows that choosing a small value for d will result in an insecure system in which an attacker can recover all secret information, i.e., break the RSA system.
In cryptography, the strong RSA assumption states that the RSA problem is intractable even when the solver is allowed to choose the public exponent e (for e ≥ 3). More specifically, given a modulus N of unknown factorization, and a ciphertext C , it is infeasible to find any pair ( M , e ) such that C ≡ M e mod N .