When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. RSA (cryptosystem) - Wikipedia

    en.wikipedia.org/wiki/RSA_(cryptosystem)

    The security of RSA relies on the practical difficulty of factoring the product of two large prime numbers, the "factoring problem". Breaking RSA encryption is known as the RSA problem. Whether it is as difficult as the factoring problem is an open question. [3] There are no published methods to defeat the system if a large enough key is used ...

  3. RSA problem - Wikipedia

    en.wikipedia.org/wiki/RSA_problem

    More specifically, the RSA problem is to efficiently compute P given an RSA public key (N, e) and a ciphertext C ≡ P e (mod N). The structure of the RSA public key requires that N be a large semiprime (i.e., a product of two large prime numbers), that 2 < e < N, that e be coprime to φ(N), and that 0 ≤ C < N.

  4. Deterministic encryption - Wikipedia

    en.wikipedia.org/wiki/Deterministic_encryption

    A deterministic encryption scheme (as opposed to a probabilistic encryption scheme) is a cryptosystem which always produces the same ciphertext for a given plaintext and key, even over separate executions of the encryption algorithm. Examples of deterministic encryption algorithms include RSA cryptosystem (without encryption padding), and many ...

  5. RSA (cryptosystem)

    en.wikipedia.org/.../mobile-html/RSA_(algorithm)

    RSA (Rivest–Shamir–Adleman) is a public-key cryptosystem, one of the oldest widely used for secure data transmission. The initialism "RSA" comes from the surnames of Ron Rivest , Adi Shamir and Leonard Adleman , who publicly described the algorithm in 1977.

  6. PKCS 1 - Wikipedia

    en.wikipedia.org/wiki/PKCS_1

    In cryptography, PKCS #1 is the first of a family of standards called Public-Key Cryptography Standards (PKCS), published by RSA Laboratories. It provides the basic definitions of and recommendations for implementing the RSA algorithm for public-key cryptography .

  7. RSA Factoring Challenge - Wikipedia

    en.wikipedia.org/wiki/RSA_Factoring_Challenge

    RSA Laboratories stated: "Now that the industry has a considerably more advanced understanding of the cryptanalytic strength of common symmetric-key and public-key algorithms, these challenges are no longer active." [6] When the challenge ended in 2007, only RSA-576 and RSA-640 had been factored from the 2001 challenge numbers. [7]

  8. Wiener's attack - Wikipedia

    en.wikipedia.org/wiki/Wiener's_attack

    In the RSA cryptosystem, Bob might tend to use a small value of d, rather than a large random number to improve the RSA decryption performance. However, Wiener's attack shows that choosing a small value for d will result in an insecure system in which an attacker can recover all secret information, i.e., break the RSA system.

  9. Strong RSA assumption - Wikipedia

    en.wikipedia.org/wiki/Strong_RSA_assumption

    In cryptography, the strong RSA assumption states that the RSA problem is intractable even when the solver is allowed to choose the public exponent e (for e ≥ 3). More specifically, given a modulus N of unknown factorization, and a ciphertext C , it is infeasible to find any pair ( M , e ) such that C ≡ M e mod N .