When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Multiple factor analysis - Wikipedia

    en.wikipedia.org/wiki/Multiple_factor_analysis

    The third analysis of the introductory example implicitly assumes a balance between flora and soil. However, in this example, the mere fact that the flora is represented by 50 variables and the soil by 11 variables implies that the PCA with 61 active variables will be influenced mainly by the flora at least on the first axis).

  3. Principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Principal_component_analysis

    Principal component analysis (PCA) is a linear dimensionality reduction technique with applications in exploratory data analysis, visualization and data preprocessing.. The data is linearly transformed onto a new coordinate system such that the directions (principal components) capturing the largest variation in the data can be easily identified.

  4. Robust principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Robust_principal_component...

    The 2014 guaranteed algorithm for the robust PCA problem (with the input matrix being = +) is an alternating minimization type algorithm. [12] The computational complexity is (⁡) where the input is the superposition of a low-rank (of rank ) and a sparse matrix of dimension and is the desired accuracy of the recovered solution, i.e., ‖ ^ ‖ where is the true low-rank component and ^ is the ...

  5. Cultural economics - Wikipedia

    en.wikipedia.org/wiki/Cultural_economics

    Cultural economics is the branch of economics that studies the relation of culture to economic outcomes. Here, 'culture' is defined by shared beliefs and preferences of respective groups. Programmatic issues include whether and how much culture matters as to economic outcomes and what its relation is to institutions. [ 1 ]

  6. Kernel principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Kernel_principal_component...

    Output after kernel PCA, with a Gaussian kernel. Note in particular that the first principal component is enough to distinguish the three different groups, which is impossible using only linear PCA, because linear PCA operates only in the given (in this case two-dimensional) space, in which these concentric point clouds are not linearly separable.

  7. Functional principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Functional_principal...

    Functional principal component analysis (FPCA) is a statistical method for investigating the dominant modes of variation of functional data.Using this method, a random function is represented in the eigenbasis, which is an orthonormal basis of the Hilbert space L 2 that consists of the eigenfunctions of the autocovariance operator.

  8. Multiple correspondence analysis - Wikipedia

    en.wikipedia.org/wiki/Multiple_correspondence...

    The unstandardized PCA applied to TCDT, the column having the weight , leads to the results of MCA. This equivalence is fully explained in a book by Jérôme Pagès. [7] It plays an important theoretical role because it opens the way to the simultaneous treatment of quantitative and qualitative variables.

  9. Modes of variation - Wikipedia

    en.wikipedia.org/wiki/Modes_of_variation

    Both in principal component analysis (PCA) and in functional principal component analysis (FPCA), modes of variation play an important role in visualizing and describing the variation in the data contributed by each eigencomponent. [2]