Search results
Results From The WOW.Com Content Network
The left null space, or cokernel, of a matrix A consists of all column vectors x such that x T A = 0 T, where T denotes the transpose of a matrix. The left null space of A is the same as the kernel of A T. The left null space of A is the orthogonal complement to the column space of A, and is dual to the cokernel of the
The left null space of A is the set of all vectors x such that x T A = 0 T. It is the same as the null space of the transpose of A. The product of the matrix A T and the vector x can be written in terms of the dot product of vectors:
This is similar to the characterization of normal matrices where A commutes with its conjugate transpose. [4] As a corollary, nonsingular matrices are always EP matrices. The sum of EP matrices A i is an EP matrix if the null-space of the sum is contained in the null-space of each matrix A i. [6]
A square matrix which is equal to the negative of its conjugate transpose, A * = −A. Skew-symmetric matrix: A matrix which is equal to the negative of its transpose, A T = −A. Skyline matrix: A rearrangement of the entries of a banded matrix which requires less space. Sparse matrix: A matrix with relatively few non-zero elements.
In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix A by producing another matrix, often denoted by A T (among other notations). [1] The transpose of a matrix was introduced in 1858 by the British mathematician Arthur Cayley. [2]
Such an belongs to 's null space and is sometimes called a (right) null vector of . The vector x {\displaystyle \mathbf {x} } can be characterized as a right-singular vector corresponding to a singular value of A {\displaystyle \mathbf {A} } that is zero.
The second proof [6] looks at the homogeneous system =, where is a with rank, and shows explicitly that there exists a set of linearly independent solutions that span the null space of . While the theorem requires that the domain of the linear map be finite-dimensional, there is no such assumption on the codomain.
In linear algebra, the transpose of a linear map between two vector spaces, defined over the same field, is an induced map between the dual spaces of the two vector spaces. The transpose or algebraic adjoint of a linear map is often used to study the original linear map.