Search results
Results From The WOW.Com Content Network
Surface tension is an important factor in the phenomenon of capillarity. Surface tension has the dimension of force per unit length, or of energy per unit area. [4] The two are equivalent, but when referring to energy per unit of area, it is common to use the term surface energy, which is a more general term in the sense that it applies also to ...
In physics, the Young–Laplace equation (/ l ə ˈ p l ɑː s /) is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin.
The Laplace pressure is the pressure difference between the inside and the outside of a curved surface that forms the boundary between two fluid regions. [1] The pressure difference is caused by the surface tension of the interface between liquid and gas, or between two immiscible liquids.
(σ: surface tension, ΔP max: maximum pressure drop, R cap: radius of capillary) Later, after the maximum pressure, the pressure of the bubble decreases and the radius of the bubble increases until the bubble is detached from the end of a capillary and a new cycle begins. This is not relevant to determine the surface tension. [3]
Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface. Right: The reduction in flux passing through a surface can be visualized by reduction in F or dS equivalently (resolved into components, θ is angle to ...
However, a fluid also experiences pressure that is induced by surface tension, commonly referred to as the Young–Laplace pressure. [1] Surface tension originates from cohesive forces between molecules, and in the bulk of the fluid, molecules experience attractive forces from all directions. The surface of a fluid is curved because exposed ...
At the meniscus interface, due to the surface tension, there is a pressure difference of =, where is the pressure on the convex side; and is known as Laplace pressure. If the tube has a circular section of radius r 0 {\displaystyle r_{0}} , and the meniscus has a spherical shape, the radius of curvature is r = r 0 / cos θ {\displaystyle r ...
Capillary pressure – Pressure between two fluids from forces between the fluids and tube walls; Capillary surface – Surface representing the interface between two different fluids; Du Noüy ring method – Method of measuring a liquid's surface tension; Sessile drop technique – Method of determining the surface energy of a solid