Search results
Results From The WOW.Com Content Network
Surface tension is an important factor in the phenomenon of capillarity. Surface tension has the dimension of force per unit length, or of energy per unit area. [4] The two are equivalent, but when referring to energy per unit of area, it is common to use the term surface energy, which is a more general term in the sense that it applies also to ...
In physics, the Young–Laplace equation (/ l ə ˈ p l ɑː s /) is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin.
The Laplace pressure is the pressure difference between the inside and the outside of a curved surface that forms the boundary between two fluid regions. [1] The pressure difference is caused by the surface tension of the interface between liquid and gas, or between two immiscible liquids.
Neglecting surface tension and viscosity, the equation was first derived by W. H. Besant in his 1859 book with the problem statement stated as An infinite mass of homogeneous incompressible fluid acted upon by no forces is at rest, and a spherical portion of the fluid is suddenly annihilated; it is required to find the instantaneous alteration of pressure at any point of the mass, and the time ...
(σ: surface tension, ΔP max: maximum pressure drop, R cap: radius of capillary) Later, after the maximum pressure, the pressure of the bubble decreases and the radius of the bubble increases until the bubble is detached from the end of a capillary and a new cycle begins. This is not relevant to determine the surface tension. [3]
They both appreciated that surface tension arose from cohesive forces between particles and that the shape of a liquid's surface reflected the short range of these forces. At the turn of the 19th century they independently derived pressure equations, but due to notation and presentation, Laplace often gets the credit.
The Kelvin equation describes the change in vapour pressure due to a curved liquid–vapor interface, such as the surface of a droplet. The vapor pressure at a convex curved surface is higher than that at a flat surface. The Kelvin equation is dependent upon thermodynamic principles and does not allude to special properties of materials.
At the trough, the radius of the stream is smaller, hence according to the Young–Laplace equation the pressure due to surface tension is increased. Likewise at the peak the radius of the stream is greater and, by the same reasoning, pressure due to surface tension is reduced.