Search results
Results From The WOW.Com Content Network
It is clear that any finite set {} of points in the complex plane has an associated polynomial = whose zeroes are precisely at the points of that set. The converse is a consequence of the fundamental theorem of algebra: any polynomial function () in the complex plane has a factorization = (), where a is a non-zero constant and {} is the set of zeroes of ().
Fuglede's theorem (functional analysis) Full employment theorem (theoretical computer science) Fulton–Hansen connectedness theorem (algebraic geometry) Fundamental theorem of algebra (complex analysis) Fundamental theorem of arbitrage-free pricing (financial mathematics) Fundamental theorem of arithmetic (number theory)
The theorem is a special case of the polynomial remainder theorem. [1] [2] The theorem results from basic properties of addition and multiplication. It follows that the theorem holds also when the coefficients and the element belong to any commutative ring, and not just a field.
Sometimes, these are only alluded to in the public literature. An example is a book of exercises, described on the back cover: This book contains almost 350 exercises in the basics of ring theory. The problems form the "folklore" of ring theory, and the solutions are given in as much detail as possible. [2]
The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b).. In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.
Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: =. That difference is algebraically factorable as (+) (); if neither factor equals one, it is a proper factorization of N.
Proofs from THE BOOK is a book of mathematical proofs by Martin Aigner and Günter M. Ziegler. The book is dedicated to the mathematician Paul Erdős, who often referred to "The Book" in which God keeps the most elegant proof of each mathematical theorem. During a lecture in 1985, Erdős said, "You don't have to believe in God, but you should ...
A well-known example is the Taniyama–Shimura conjecture, now the modularity theorem, which proposed that each elliptic curve over the rational numbers can be translated into a modular form (in such a way as to preserve the associated L-function). There are difficulties in identifying this with an isomorphism, in any strict sense of the word.