When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Matrix norm - Wikipedia

    en.wikipedia.org/wiki/Matrix_norm

    Suppose a vector norm ‖ ‖ on and a vector norm ‖ ‖ on are given. Any matrix A induces a linear operator from to with respect to the standard basis, and one defines the corresponding induced norm or operator norm or subordinate norm on the space of all matrices as follows: ‖ ‖, = {‖ ‖: ‖ ‖ =} = {‖ ‖ ‖ ‖:} . where denotes the supremum.

  3. Normal matrix - Wikipedia

    en.wikipedia.org/wiki/Normal_matrix

    Phrased differently: a matrix is normal if and only if its eigenspaces span C n and are pairwise orthogonal with respect to the standard inner product of C n. The spectral theorem for normal matrices is a special case of the more general Schur decomposition which holds for all square matrices. Let A be a square matrix.

  4. Trace (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Trace_(linear_algebra)

    The norm derived from this inner product is called the Frobenius norm, and it satisfies a submultiplicative property, as can be proven with the Cauchy–Schwarz inequality: [⁡ ()] ⁡ ⁡ , if A and B are real matrices such that A B is a square matrix. The Frobenius inner product and norm arise frequently in matrix calculus and statistics.

  5. Frobenius normal form - Wikipedia

    en.wikipedia.org/wiki/Frobenius_normal_form

    where C is the companion matrix of the irreducible polynomial P, and U is a matrix whose sole nonzero entry is a 1 in the upper right-hand corner. For the case of a linear irreducible factor P = x − λ , these blocks are reduced to single entries C = λ and U = 1 and, one finds a ( transposed ) Jordan block.

  6. Matrix normal distribution - Wikipedia

    en.wikipedia.org/wiki/Matrix_normal_distribution

    The probability density function for the random matrix X (n × p) that follows the matrix normal distribution , (,,) has the form: (,,) = ⁡ ([() ()]) / | | / | | /where denotes trace and M is n × p, U is n × n and V is p × p, and the density is understood as the probability density function with respect to the standard Lebesgue measure in , i.e.: the measure corresponding to integration ...

  7. Smith normal form - Wikipedia

    en.wikipedia.org/wiki/Smith_normal_form

    In mathematics, the Smith normal form (sometimes abbreviated SNF [1]) is a normal form that can be defined for any matrix (not necessarily square) with entries in a principal ideal domain (PID). The Smith normal form of a matrix is diagonal, and can be obtained from the original matrix by multiplying on the left and right by invertible square ...

  8. Norm (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Norm_(mathematics)

    In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin.

  9. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    The Jordan form is used to find a normal form of matrices up to conjugacy such that normal matrices make up an algebraic variety of a low fixed degree in the ambient matrix space. Sets of representatives of matrix conjugacy classes for Jordan normal form or rational canonical forms in general do not constitute linear or affine subspaces in the ...