When.com Web Search

  1. Ads

    related to: adding subtracting multiplying polynomials kuta software

Search results

  1. Results From The WOW.Com Content Network
  2. List of open-source software for mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_open-source...

    Besides support of factoring, algebraic number theory, and analysis of elliptic curves, it works with mathematical objects like matrices, polynomials, power series, algebraic numbers, and transcendental functions. [3] Originally developed by Henri Cohen et al at Université Bordeaux I, France, it now is GPL software. The gp interactive shell ...

  3. Al-Karaji - Wikipedia

    en.wikipedia.org/wiki/Al-Karaji

    His work on algebra and polynomials gave the rules for arithmetic operations for adding, subtracting and multiplying polynomials; though he was restricted to dividing polynomials by monomials. F. Woepcke was the first historian to realise the importance of al-Karaji's work and later historians mostly agree with his interpretation.

  4. Magma (computer algebra system) - Wikipedia

    en.wikipedia.org/wiki/Magma_(computer_algebra...

    Magma contains asymptotically fast algorithms for all fundamental integer and polynomial operations, such as the Schönhage–Strassen algorithm for fast multiplication of integers and polynomials. Integer factorization algorithms include the Elliptic Curve Method, the Quadratic sieve and the Number field sieve. Algebraic number theory

  5. Algebra tile - Wikipedia

    en.wikipedia.org/wiki/Algebra_tile

    An example of multiplying binomials is (2x+1)×(x+2) and the first step the student would take is set up two positive x tiles and one positive unit tile to represent the length of a rectangle and then one would take one positive x tile and two positive unit tiles to represent the width. These two lines of tiles would create a space that looks ...

  6. FOIL method - Wikipedia

    en.wikipedia.org/wiki/FOIL_method

    A visual memory tool can replace the FOIL mnemonic for a pair of polynomials with any number of terms. Make a table with the terms of the first polynomial on the left edge and the terms of the second on the top edge, then fill in the table with products of multiplication. The table equivalent to the FOIL rule looks like this:

  7. Difference engine - Wikipedia

    en.wikipedia.org/wiki/Difference_engine

    The values of the polynomial are produced without ever having to multiply. A difference engine only needs to be able to add. From one loop to the next, it needs to store 2 numbers—in this example (the last elements in the first and second columns). To tabulate polynomials of degree n, one needs sufficient storage to hold n numbers.

  8. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    If a positional numeral system is used, a natural way of multiplying numbers is taught in schools as long multiplication, sometimes called grade-school multiplication, sometimes called the Standard Algorithm: multiply the multiplicand by each digit of the multiplier and then add up all the properly shifted results.

  9. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    The basic principle of Karatsuba's algorithm is divide-and-conquer, using a formula that allows one to compute the product of two large numbers and using three multiplications of smaller numbers, each with about half as many digits as or , plus some additions and digit shifts.