When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Neutron number - Wikipedia

    en.wikipedia.org/wiki/Neutron_number

    The neutron number (symbol N) is the number of neutrons in a nuclide. Atomic number (proton number) plus neutron number equals mass number: Z + N = A. The difference between the neutron number and the atomic number is known as the neutron excess: D = N − Z = A − 2Z. Neutron number is not written explicitly in nuclide symbol notation, but ...

  3. Neutron - Wikipedia

    en.wikipedia.org/wiki/Neutron

    Dedicated neutron sources like neutron generators, research reactors and spallation sources produce free neutrons for use in irradiation and in neutron scattering experiments. A free neutron spontaneously decays to a proton, an electron, and an antineutrino, with a mean lifetime of about 15 minutes.

  4. Mass number - Wikipedia

    en.wikipedia.org/wiki/Mass_number

    For other isotopes, the isotopic mass is usually within 0.1 u of the mass number. For example, 35 Cl (17 protons and 18 neutrons) has a mass number of 35 and an isotopic mass of 34.96885. [7] The difference of the actual isotopic mass minus the mass number of an atom is known as the mass excess, [8] which for 35 Cl is –0.03115.

  5. Magic number (physics) - Wikipedia

    en.wikipedia.org/wiki/Magic_number_(physics)

    A graph of isotope stability, with some of the magic numbers. In nuclear physics, a magic number is a number of nucleons (either protons or neutrons, separately) such that they are arranged into complete shells within the atomic nucleus. As a result, atomic nuclei with a "magic" number of protons or neutrons are much more stable than other nuclei.

  6. Table of nuclides - Wikipedia

    en.wikipedia.org/wiki/Table_of_nuclides

    Nuclide charts organize nuclides along the X axis by their numbers of neutrons and along the Y axis by their numbers of protons, out to the limits of the neutron and proton drip lines. This representation was first published by Kurt Guggenheimer in 1934 [ 2 ] and expanded by Giorgio Fea in 1935, [ 3 ] Emilio Segrè in 1945 or Glenn Seaborg.

  7. Karlsruhe Nuclide Chart - Wikipedia

    en.wikipedia.org/wiki/Karlsruhe_Nuclide_Chart

    The first printed edition of the Karlsruhe Nuclide Chart of 1958 in the form of a wall chart was created by Walter Seelmann-Eggebert and his assistant Gerda Pfennig. Walter Seelmann-Eggebert was director of the Radiochemistry Institute in the 1956 founded "Kernreaktor Bau- und Betriebsgesellschaft mbH" in Karlsruhe, Germany (a predecessor institution of the later "(Kern-)Forschungszentrum ...

  8. List of equations in nuclear and particle physics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Number of atoms N = Number of atoms remaining at time t. N 0 = Initial number of atoms at time t = 0 N D = Number of atoms decayed at time t = + dimensionless dimensionless Decay rate, activity of a radioisotope: A = Bq = Hz = s −1 [T] −1: Decay constant: λ = /

  9. Nucleon - Wikipedia

    en.wikipedia.org/wiki/Nucleon

    [a] Thus, the neutron has a charge of 0 (zero), and therefore is electrically neutral; indeed, the term "neutron" comes from the fact that a neutron is electrically neutral. The masses of the proton and neutron are similar: for the proton it is 1.6726 × 10 −27 kg ( 938.27 MeV/ c 2 ), while for the neutron it is 1.6749 × 10 −27 kg ( 939.57 ...