Search results
Results From The WOW.Com Content Network
The degeneracy of a graph is the smallest value of k for which it is k-degenerate. The degeneracy of a graph is a measure of how sparse it is, and is within a constant factor of other sparsity measures such as the arboricity of a graph. Degeneracy is also known as the k-core number, [1] width, [2] and linkage, [3] and is essentially the same as ...
Any complete graph is a core. A cycle of odd length is a core. A graph is a core if and only if the core of is equal to . Every two cycles of even length, and more generally every two bipartite graphs are hom-equivalent. The core of each of these graphs is the two-vertex complete graph K 2.
The complete graph on n vertices is denoted by K n.Some sources claim that the letter K in this notation stands for the German word komplett, [4] but the German name for a complete graph, vollständiger Graph, does not contain the letter K, and other sources state that the notation honors the contributions of Kazimierz Kuratowski to graph theory.
A k-factor of a graph is a spanning k-regular subgraph, and a k-factorization partitions the edges of the graph into disjoint k-factors. A graph G is said to be k-factorable if it admits a k-factorization. In particular, a 1-factor is a perfect matching, and a 1-factorization of a k-regular graph is a proper edge coloring with k colors.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A graph with connectivity 4. In graph theory, a connected graph G is said to be k-vertex-connected (or k-connected) if it has more than k vertices and remains connected whenever fewer than k vertices are removed. The vertex-connectivity, or just connectivity, of a graph is the largest k for which the graph is k-vertex-connected.
In graph theory, a Moore graph is a regular graph whose girth (the shortest cycle length) is more than twice its diameter (the distance between the farthest two vertices). If the degree of such a graph is d and its diameter is k , its girth must equal 2 k + 1 .
Alternatively, If A is an adjacency matrix for the graph, modified to have nonzero entries on its main diagonal, then the nonzero entries of A k give the adjacency matrix of the k th power of the graph, [14] from which it follows that constructing k th powers may be performed in an amount of time that is within a logarithmic factor of the time ...